File size: 5,295 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from .general import FUNC_LIST


class HadaWeight(torch.autograd.Function):
    @staticmethod
    def forward(ctx, w1d, w1u, w2d, w2u, scale=torch.tensor(1)):
        ctx.save_for_backward(w1d, w1u, w2d, w2u, scale)
        diff_weight = ((w1u @ w1d) * (w2u @ w2d)) * scale
        return diff_weight

    @staticmethod
    def backward(ctx, grad_out):
        (w1d, w1u, w2d, w2u, scale) = ctx.saved_tensors
        grad_out = grad_out * scale
        temp = grad_out * (w2u @ w2d)
        grad_w1u = temp @ w1d.T
        grad_w1d = w1u.T @ temp

        temp = grad_out * (w1u @ w1d)
        grad_w2u = temp @ w2d.T
        grad_w2d = w2u.T @ temp

        del temp
        return grad_w1d, grad_w1u, grad_w2d, grad_w2u, None


class HadaWeightTucker(torch.autograd.Function):
    @staticmethod
    def forward(ctx, t1, w1d, w1u, t2, w2d, w2u, scale=torch.tensor(1)):
        ctx.save_for_backward(t1, w1d, w1u, t2, w2d, w2u, scale)

        rebuild1 = torch.einsum("i j ..., j r, i p -> p r ...", t1, w1d, w1u)
        rebuild2 = torch.einsum("i j ..., j r, i p -> p r ...", t2, w2d, w2u)

        return rebuild1 * rebuild2 * scale

    @staticmethod
    def backward(ctx, grad_out):
        (t1, w1d, w1u, t2, w2d, w2u, scale) = ctx.saved_tensors
        grad_out = grad_out * scale

        temp = torch.einsum("i j ..., j r -> i r ...", t2, w2d)
        rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w2u)

        grad_w = rebuild * grad_out
        del rebuild

        grad_w1u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
        grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w1u.T)
        del grad_w, temp

        grad_w1d = torch.einsum("i r ..., i j ... -> r j", t1, grad_temp)
        grad_t1 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w1d.T)
        del grad_temp

        temp = torch.einsum("i j ..., j r -> i r ...", t1, w1d)
        rebuild = torch.einsum("i j ..., i r -> r j ...", temp, w1u)

        grad_w = rebuild * grad_out
        del rebuild

        grad_w2u = torch.einsum("r j ..., i j ... -> r i", temp, grad_w)
        grad_temp = torch.einsum("i j ..., i r -> r j ...", grad_w, w2u.T)
        del grad_w, temp

        grad_w2d = torch.einsum("i r ..., i j ... -> r j", t2, grad_temp)
        grad_t2 = torch.einsum("i j ..., j r -> i r ...", grad_temp, w2d.T)
        del grad_temp
        return grad_t1, grad_w1d, grad_w1u, grad_t2, grad_w2d, grad_w2u, None


def make_weight(w1d, w1u, w2d, w2u, scale):
    return HadaWeight.apply(w1d, w1u, w2d, w2u, scale)


def make_weight_tucker(t1, w1d, w1u, t2, w2d, w2u, scale):
    return HadaWeightTucker.apply(t1, w1d, w1u, t2, w2d, w2u, scale)


def weight_gen(org_weight, rank, tucker=True):
    """### weight_gen

    Args:
        org_weight (torch.Tensor): the weight tensor
        rank (int): low rank

    Returns:
        torch.Tensor: w1d, w2d, w1u, w2u[, t1, t2]
    """
    out_dim, in_dim, *k = org_weight.shape
    if k and tucker:
        w1d = torch.empty(rank, in_dim)
        w1u = torch.empty(rank, out_dim)
        t1 = torch.empty(rank, rank, *k)
        w2d = torch.empty(rank, in_dim)
        w2u = torch.empty(rank, out_dim)
        t2 = torch.empty(rank, rank, *k)
        nn.init.normal_(t1, std=0.1)
        nn.init.normal_(t2, std=0.1)
    else:
        w1d = torch.empty(rank, in_dim)
        w1u = torch.empty(out_dim, rank)
        w2d = torch.empty(rank, in_dim)
        w2u = torch.empty(out_dim, rank)
        t1 = t2 = None
    nn.init.normal_(w1d, std=1)
    nn.init.constant_(w1u, 0)
    nn.init.normal_(w2d, std=1)
    nn.init.normal_(w2u, std=0.1)
    return w1d, w1u, w2d, w2u, t1, t2


def diff_weight(*weights, gamma=1.0):
    """### diff_weight

    Get ΔW = BA, where BA is low rank decomposition

    Args:
        wegihts (tuple[torch.Tensor]): (w1d, w2d, w1u, w2u[, t1, t2])
        gamma (float, optional): scale factor, normally alpha/rank here

    Returns:
        torch.Tensor: ΔW
    """
    w1d, w1u, w2d, w2u, t1, t2 = weights
    if t1 is not None and t2 is not None:
        R, I = w1d.shape
        R, O = w1u.shape
        R, R, *k = t1.shape
        result = make_weight_tucker(t1, w1d, w1u, t2, w2d, w2u, gamma)
    else:
        R, I, *k = w1d.shape
        O, R, *_ = w1u.shape
        w1d = w1d.reshape(w1d.size(0), -1)
        w1u = w1u.reshape(-1, w1u.size(1))
        w2d = w2d.reshape(w2d.size(0), -1)
        w2u = w2u.reshape(-1, w2u.size(1))
        result = make_weight(w1d, w1u, w2d, w2u, gamma)

    result = result.reshape(O, I, *k)
    return result


def bypass_forward_diff(x, org_out, *weights, gamma=1.0, extra_args={}):
    """### bypass_forward_diff

    Args:
        x (torch.Tensor): input tensor
        weights (tuple[torch.Tensor]): (w1d, w2d, w1u, w2u[, t1, t2])
        gamma (float, optional): scale factor, normally alpha/rank here
        extra_args (dict, optional): extra args for forward func, \
            e.g. padding, stride for Conv1/2/3d

    Returns:
        torch.Tensor: output tensor
    """
    w1d, w1u, w2d, w2u, t1, t2 = weights
    diff_w = diff_weight(w1d, w1u, w2d, w2u, t1, t2, gamma)
    return FUNC_LIST[w1d.dim() if t1 is None else t1.dim()](x, diff_w, **extra_args)