File size: 7,214 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from .general import rebuild_tucker, FUNC_LIST
from .general import factorization


def make_kron(w1, w2, scale):
    for _ in range(w2.dim() - w1.dim()):
        w1 = w1.unsqueeze(-1)
    w2 = w2.contiguous()
    rebuild = torch.kron(w1, w2)

    if scale != 1:
        rebuild = rebuild * scale

    return rebuild


def weight_gen(
    org_weight,
    rank,
    tucker=True,
    factor=-1,
    decompose_both=False,
    full_matrix=False,
    unbalanced_factorization=False,
):
    """### weight_gen

    Args:
        org_weight (torch.Tensor): the weight tensor
        rank (int): low rank

    Returns:
        torch.Tensor | None: w1, w1a, w1b, w2, w2a, w2b, t2
    """
    out_dim, in_dim, *k = org_weight.shape
    w1 = w1a = w1b = None
    w2 = w2a = w2b = None
    t2 = None
    use_w1 = use_w2 = False

    if k:
        k_size = k
        shape = (out_dim, in_dim, *k_size)

        in_m, in_n = factorization(in_dim, factor)
        out_l, out_k = factorization(out_dim, factor)
        if unbalanced_factorization:
            out_l, out_k = out_k, out_l
        shape = ((out_l, out_k), (in_m, in_n), *k_size)  # ((a, b), (c, d), *k_size)
        tucker = tucker and any(i != 1 for i in k_size)
        if (
            decompose_both
            and rank < max(shape[0][0], shape[1][0]) / 2
            and not full_matrix
        ):
            w1a = torch.empty(shape[0][0], rank)
            w1b = torch.empty(rank, shape[1][0])
        else:
            use_w1 = True
            w1 = torch.empty(shape[0][0], shape[1][0])  # a*c, 1-mode

        if rank >= max(shape[0][1], shape[1][1]) / 2 or full_matrix:
            use_w2 = True
            w2 = torch.empty(shape[0][1], shape[1][1], *k_size)
        elif tucker:
            t2 = torch.empty(rank, rank, *shape[2:])
            w2a = torch.empty(rank, shape[0][1])  # b, 1-mode
            w2b = torch.empty(rank, shape[1][1])  # d, 2-mode
        else:  # Conv2d not tucker
            # bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
            w2a = torch.empty(shape[0][1], rank)
            w2b = torch.empty(rank, shape[1][1], *shape[2:])
            # w1 ⊗ (w2a x w2b) = (a, b)⊗((c, dim)x(dim, d*k1*k2)) = (a, b)⊗(c, d*k1*k2) = (ac, bd*k1*k2)
    else:  # Linear
        shape = (out_dim, in_dim)

        in_m, in_n = factorization(in_dim, factor)
        out_l, out_k = factorization(out_dim, factor)
        if unbalanced_factorization:
            out_l, out_k = out_k, out_l
        shape = (
            (out_l, out_k),
            (in_m, in_n),
        )  # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
        # smaller part. weight scale
        if decompose_both and rank < max(shape[0][0], shape[1][0]) / 2:
            w1a = torch.empty(shape[0][0], rank)
            w1b = torch.empty(rank, shape[1][0])
        else:
            use_w1 = True
            w1 = torch.empty(shape[0][0], shape[1][0])  # a*c, 1-mode
        if rank < max(shape[0][1], shape[1][1]) / 2:
            # bigger part. weight and LoRA. [b, dim] x [dim, d]
            w2a = torch.empty(shape[0][1], rank)
            w2b = torch.empty(rank, shape[1][1])
            # w1 ⊗ (w2a x w2b) = (a, b)⊗((c, dim)x(dim, d)) = (a, b)⊗(c, d) = (ac, bd)
        else:
            use_w2 = True
            w2 = torch.empty(shape[0][1], shape[1][1])

    if use_w2:
        torch.nn.init.constant_(w2, 1)
    else:
        if tucker:
            torch.nn.init.kaiming_uniform_(t2, a=math.sqrt(5))
        torch.nn.init.kaiming_uniform_(w2a, a=math.sqrt(5))
        torch.nn.init.constant_(w2b, 1)

    if use_w1:
        torch.nn.init.kaiming_uniform_(w1, a=math.sqrt(5))
    else:
        torch.nn.init.kaiming_uniform_(w1a, a=math.sqrt(5))
        torch.nn.init.kaiming_uniform_(w1b, a=math.sqrt(5))

    return w1, w1a, w1b, w2, w2a, w2b, t2


def diff_weight(*weights, gamma=1.0):
    """### diff_weight

    Args:
        weights (tuple[torch.Tensor]): (w1, w1a, w1b, w2, w2a, w2b, t)
        gamma (float, optional): scale factor, normally alpha/rank here

    Returns:
        torch.Tensor: ΔW
    """
    w1, w1a, w1b, w2, w2a, w2b, t = weights
    if w1a is not None:
        rank = w1a.shape[1]
    elif w2a is not None:
        rank = w2a.shape[1]
    else:
        rank = gamma
    scale = gamma / rank
    if w1 is None:
        w1 = w1a @ w1b
    if w2 is None:
        if t is None:
            r, o, *k = w2b.shape
            w2 = w2a @ w2b.view(r, -1)
            w2 = w2.view(-1, o, *k)
        else:
            w2 = rebuild_tucker(t, w2a, w2b)
    return make_kron(w1, w2, scale)


def bypass_forward_diff(h, org_out, *weights, gamma=1.0, extra_args={}):
    """### bypass_forward_diff

    Args:
        weights (tuple[torch.Tensor]): (w1, w1a, w1b, w2, w2a, w2b, t)
        gamma (float, optional): scale factor, normally alpha/rank here
        extra_args (dict, optional): extra args for forward func, \
            e.g. padding, stride for Conv1/2/3d

    Returns:
        torch.Tensor: output tensor
    """
    w1, w1a, w1b, w2, w2a, w2b, t = weights
    use_w1 = w1 is not None
    use_w2 = w2 is not None
    tucker = t is not None
    dim = t.dim() if tucker else w2.dim() if w2 is not None else w2b.dim()
    rank = w1b.size(0) if not use_w1 else w2b.size(0) if not use_w2 else gamma
    scale = gamma / rank
    is_conv = dim > 2
    op = FUNC_LIST[dim]

    if is_conv:
        kw_dict = extra_args
    else:
        kw_dict = {}

    if use_w2:
        ba = w2
    else:
        a = w2b
        b = w2a

        if t is not None:
            a = a.view(*a.shape, *[1] * (dim - 2))
            b = b.view(*b.shape, *[1] * (dim - 2))
        elif is_conv:
            b = b.view(*b.shape, *[1] * (dim - 2))

    if use_w1:
        c = w1
    else:
        c = w1a @ w1b
    uq = c.size(1)

    if is_conv:
        # (b, uq), vq, ...
        B, _, *rest = h.shape
        h_in_group = h.reshape(B * uq, -1, *rest)
    else:
        # b, ..., uq, vq
        h_in_group = h.reshape(*h.shape[:-1], uq, -1)

    if use_w2:
        hb = op(h_in_group, ba, **kw_dict)
    else:
        if is_conv:
            if tucker:
                ha = op(h_in_group, a)
                ht = op(ha, t, **kw_dict)
                hb = op(ht, b)
            else:
                ha = op(h_in_group, a, **kw_dict)
                hb = op(ha, b)
        else:
            ha = op(h_in_group, a, **kw_dict)
            hb = op(ha, b)

    if is_conv:
        # (b, uq), vp, ..., f
        # -> b, uq, vp, ..., f
        # -> b, f, vp, ..., uq
        hb = hb.view(B, -1, *hb.shape[1:])
        h_cross_group = hb.transpose(1, -1)
    else:
        # b, ..., uq, vq
        # -> b, ..., vq, uq
        h_cross_group = hb.transpose(-1, -2)

    hc = F.linear(h_cross_group, c)
    if is_conv:
        # b, f, vp, ..., up
        # -> b, up, vp, ... ,f
        # -> b, c, ..., f
        hc = hc.transpose(1, -1)
        h = hc.reshape(B, -1, *hc.shape[3:])
    else:
        # b, ..., vp, up
        # -> b, ..., up, vp
        # -> b, ..., c
        hc = hc.transpose(-1, -2)
        h = hc.reshape(*hc.shape[:-2], -1)

    return h * scale