File size: 23,798 Bytes
cc69848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import os
import fnmatch
import re
import logging
from typing import Any, List
import torch
from .utils import precalculate_safetensors_hashes
from .wrapper import LycorisNetwork, network_module_dict, deprecated_arg_dict
from .modules.locon import LoConModule
from .modules.loha import LohaModule
from .modules.ia3 import IA3Module
from .modules.lokr import LokrModule
from .modules.dylora import DyLoraModule
from .modules.glora import GLoRAModule
from .modules.norms import NormModule
from .modules.full import FullModule
from .modules.diag_oft import DiagOFTModule
from .modules.boft import ButterflyOFTModule
from .modules import make_module, get_module
from .config import PRESET
from .utils.preset import read_preset
from .utils import str_bool
from .logging import logger
def create_network(
multiplier, network_dim, network_alpha, vae, text_encoder, unet, **kwargs
):
for key, value in list(kwargs.items()):
if key in deprecated_arg_dict:
logger.warning(
f"{key} is deprecated. Please use {deprecated_arg_dict[key]} instead.",
stacklevel=2,
)
kwargs[deprecated_arg_dict[key]] = value
if network_dim is None:
network_dim = 4 # default
conv_dim = int(kwargs.get("conv_dim", network_dim) or network_dim)
conv_alpha = float(kwargs.get("conv_alpha", network_alpha) or network_alpha)
dropout = float(kwargs.get("dropout", 0.0) or 0.0)
rank_dropout = float(kwargs.get("rank_dropout", 0.0) or 0.0)
module_dropout = float(kwargs.get("module_dropout", 0.0) or 0.0)
algo = (kwargs.get("algo", "lora") or "lora").lower()
use_tucker = str_bool(
not kwargs.get("disable_conv_cp", True)
or kwargs.get("use_conv_cp", False)
or kwargs.get("use_cp", False)
or kwargs.get("use_tucker", False)
)
use_scalar = str_bool(kwargs.get("use_scalar", False))
block_size = int(kwargs.get("block_size", None) or 4)
train_norm = str_bool(kwargs.get("train_norm", False))
constraint = float(kwargs.get("constraint", None) or 0)
rescaled = str_bool(kwargs.get("rescaled", False))
weight_decompose = str_bool(kwargs.get("dora_wd", False))
wd_on_output = str_bool(kwargs.get("wd_on_output", False))
full_matrix = str_bool(kwargs.get("full_matrix", False))
bypass_mode = str_bool(kwargs.get("bypass_mode", None))
rs_lora = str_bool(kwargs.get("rs_lora", False))
unbalanced_factorization = str_bool(kwargs.get("unbalanced_factorization", False))
train_t5xxl = str_bool(kwargs.get("train_t5xxl", False))
if unbalanced_factorization:
logger.info("Unbalanced factorization for LoKr is enabled")
if bypass_mode:
logger.info("Bypass mode is enabled")
if weight_decompose:
logger.info("Weight decomposition is enabled")
if full_matrix:
logger.info("Full matrix mode for LoKr is enabled")
preset_str = kwargs.get("preset", "full")
if preset_str not in PRESET:
preset = read_preset(preset_str)
else:
preset = PRESET[preset_str]
assert preset is not None
LycorisNetworkKohya.apply_preset(preset)
logger.info(f"Using rank adaptation algo: {algo}")
if algo == "ia3" and preset_str != "ia3":
logger.warning("It is recommended to use preset ia3 for IA^3 algorithm")
network = LycorisNetworkKohya(
text_encoder,
unet,
multiplier=multiplier,
lora_dim=network_dim,
conv_lora_dim=conv_dim,
alpha=network_alpha,
conv_alpha=conv_alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
use_tucker=use_tucker,
use_scalar=use_scalar,
network_module=algo,
train_norm=train_norm,
decompose_both=kwargs.get("decompose_both", False),
factor=kwargs.get("factor", -1),
block_size=block_size,
constraint=constraint,
rescaled=rescaled,
weight_decompose=weight_decompose,
wd_on_out=wd_on_output,
full_matrix=full_matrix,
bypass_mode=bypass_mode,
rs_lora=rs_lora,
unbalanced_factorization=unbalanced_factorization,
train_t5xxl=train_t5xxl,
)
return network
def create_network_from_weights(
multiplier,
file,
vae,
text_encoder,
unet,
weights_sd=None,
for_inference=False,
**kwargs,
):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
unet_loras = {}
te_loras = {}
for key, value in weights_sd.items():
if "." not in key:
continue
lora_name = key.split(".")[0]
if lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
unet_loras[lora_name] = None
elif lora_name.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
te_loras[lora_name] = None
for name, modules in unet.named_modules():
lora_name = f"{LycorisNetworkKohya.LORA_PREFIX_UNET}_{name}".replace(".", "_")
if lora_name in unet_loras:
unet_loras[lora_name] = modules
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for idx, te in enumerate(text_encoders):
if use_index:
prefix = f"{LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER}{idx+1}"
else:
prefix = LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
for name, modules in te.named_modules():
lora_name = f"{prefix}_{name}".replace(".", "_")
if lora_name in te_loras:
te_loras[lora_name] = modules
original_level = logger.level
logger.setLevel(logging.ERROR)
network = LycorisNetworkKohya(text_encoder, unet)
network.unet_loras = []
network.text_encoder_loras = []
logger.setLevel(original_level)
logger.info("Loading UNet Modules from state dict...")
for lora_name, orig_modules in unet_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.unet_loras.append(module)
logger.info(f"{len(network.unet_loras)} Modules Loaded")
logger.info("Loading TE Modules from state dict...")
for lora_name, orig_modules in te_loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.text_encoder_loras.append(module)
logger.info(f"{len(network.text_encoder_loras)} Modules Loaded")
for lora in network.unet_loras + network.text_encoder_loras:
lora.multiplier = multiplier
return network, weights_sd
class LycorisNetworkKohya(LycorisNetwork):
"""
LoRA + LoCon
"""
# Ignore proj_in or proj_out, their channels is only a few.
ENABLE_CONV = True
UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"ResnetBlock2D",
"Downsample2D",
"Upsample2D",
"HunYuanDiTBlock",
"DoubleStreamBlock",
"SingleStreamBlock",
"SingleDiTBlock",
"MMDoubleStreamBlock", #HunYuanVideo
"MMSingleStreamBlock", #HunYuanVideo
]
UNET_TARGET_REPLACE_NAME = [
"conv_in",
"conv_out",
"time_embedding.linear_1",
"time_embedding.linear_2",
]
TEXT_ENCODER_TARGET_REPLACE_MODULE = [
"CLIPAttention",
"CLIPSdpaAttention",
"CLIPMLP",
"MT5Block",
"BertLayer",
]
TEXT_ENCODER_TARGET_REPLACE_NAME = []
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
MODULE_ALGO_MAP = {}
NAME_ALGO_MAP = {}
USE_FNMATCH = False
@classmethod
def apply_preset(cls, preset):
if "enable_conv" in preset:
cls.ENABLE_CONV = preset["enable_conv"]
if "unet_target_module" in preset:
cls.UNET_TARGET_REPLACE_MODULE = preset["unet_target_module"]
if "unet_target_name" in preset:
cls.UNET_TARGET_REPLACE_NAME = preset["unet_target_name"]
if "text_encoder_target_module" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_MODULE = preset[
"text_encoder_target_module"
]
if "text_encoder_target_name" in preset:
cls.TEXT_ENCODER_TARGET_REPLACE_NAME = preset["text_encoder_target_name"]
if "module_algo_map" in preset:
cls.MODULE_ALGO_MAP = preset["module_algo_map"]
if "name_algo_map" in preset:
cls.NAME_ALGO_MAP = preset["name_algo_map"]
if "use_fnmatch" in preset:
cls.USE_FNMATCH = preset["use_fnmatch"]
return cls
def __init__(
self,
text_encoder,
unet,
multiplier=1.0,
lora_dim=4,
conv_lora_dim=4,
alpha=1,
conv_alpha=1,
use_tucker=False,
dropout=0,
rank_dropout=0,
module_dropout=0,
network_module: str = "locon",
norm_modules=NormModule,
train_norm=False,
train_t5xxl=False,
**kwargs,
) -> None:
torch.nn.Module.__init__(self)
root_kwargs = kwargs
self.multiplier = multiplier
self.lora_dim = lora_dim
self.train_t5xxl = train_t5xxl
if not self.ENABLE_CONV:
conv_lora_dim = 0
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim:
logger.info("Apply different lora dim for conv layer")
logger.info(f"Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}")
elif self.conv_lora_dim == 0:
logger.info("Disable conv layer")
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.conv_lora_dim and self.alpha != self.conv_alpha:
logger.info("Apply different alpha value for conv layer")
logger.info(f"Conv alpha: {conv_alpha}, Linear alpha: {alpha}")
if 1 >= dropout >= 0:
logger.info(f"Use Dropout value: {dropout}")
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.use_tucker = use_tucker
def create_single_module(
lora_name: str,
module: torch.nn.Module,
algo_name,
dim=None,
alpha=None,
use_tucker=self.use_tucker,
**kwargs,
):
for k, v in root_kwargs.items():
if k in kwargs:
continue
kwargs[k] = v
if train_norm and "Norm" in module.__class__.__name__:
return norm_modules(
lora_name,
module,
self.multiplier,
self.rank_dropout,
self.module_dropout,
**kwargs,
)
lora = None
if isinstance(module, torch.nn.Linear) and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif isinstance(
module, (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)
):
k_size, *_ = module.kernel_size
if k_size == 1 and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif conv_lora_dim > 0 or dim:
dim = dim or conv_lora_dim
alpha = alpha or self.conv_alpha
else:
return None
else:
return None
lora = network_module_dict[algo_name](
lora_name,
module,
self.multiplier,
dim,
alpha,
self.dropout,
self.rank_dropout,
self.module_dropout,
use_tucker,
**kwargs,
)
return lora
def create_modules_(
prefix: str,
root_module: torch.nn.Module,
algo,
configs={},
):
loras = {}
lora_names = []
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in self.MODULE_ALGO_MAP and module is not root_module:
next_config = self.MODULE_ALGO_MAP[module_name]
next_algo = next_config.get("algo", algo)
new_loras, new_lora_names = create_modules_(
f"{prefix}_{name}", module, next_algo, next_config
)
for lora_name, lora in zip(new_lora_names, new_loras):
if lora_name not in loras:
loras[lora_name] = lora
lora_names.append(lora_name)
continue
if name:
lora_name = prefix + "." + name
else:
lora_name = prefix
lora_name = lora_name.replace(".", "_")
if lora_name in loras:
continue
lora = create_single_module(lora_name, module, algo, **configs)
if lora is not None:
loras[lora_name] = lora
lora_names.append(lora_name)
return [loras[lora_name] for lora_name in lora_names], lora_names
# create module instances
def create_modules(
prefix,
root_module: torch.nn.Module,
target_replace_modules,
target_replace_names=[],
) -> List:
logger.info("Create LyCORIS Module")
loras = []
next_config = {}
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in target_replace_modules and not any(
self.match_fn(t, name) for t in target_replace_names
):
if module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
loras.extend(
create_modules_(f"{prefix}_{name}", module, algo, next_config)[
0
]
)
next_config = {}
elif name in target_replace_names or any(
self.match_fn(t, name) for t in target_replace_names
):
conf_from_name = self.find_conf_for_name(name)
if conf_from_name is not None:
next_config = conf_from_name
algo = next_config.get("algo", network_module)
elif module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
lora_name = prefix + "." + name
lora_name = lora_name.replace(".", "_")
lora = create_single_module(lora_name, module, algo, **next_config)
next_config = {}
if lora is not None:
loras.append(lora)
return loras
if network_module == GLoRAModule:
logger.info("GLoRA enabled, only train transformer")
# only train transformer (for GLoRA)
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE = [
"Transformer2DModel",
"Attention",
]
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME = []
self.text_encoder_loras = []
if text_encoder:
if isinstance(text_encoder, list):
text_encoders = text_encoder
use_index = True
else:
text_encoders = [text_encoder]
use_index = False
for i, te in enumerate(text_encoders):
self.text_encoder_loras.extend(
create_modules(
LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER
+ (f"{i+1}" if use_index else ""),
te,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.TEXT_ENCODER_TARGET_REPLACE_NAME,
)
)
logger.info(
f"create LyCORIS for Text Encoder: {len(self.text_encoder_loras)} modules."
)
self.unet_loras = create_modules(
LycorisNetworkKohya.LORA_PREFIX_UNET,
unet,
LycorisNetworkKohya.UNET_TARGET_REPLACE_MODULE,
LycorisNetworkKohya.UNET_TARGET_REPLACE_NAME,
)
logger.info(f"create LyCORIS for U-Net: {len(self.unet_loras)} modules.")
algo_table = {}
for lora in self.text_encoder_loras + self.unet_loras:
algo_table[lora.__class__.__name__] = (
algo_table.get(lora.__class__.__name__, 0) + 1
)
logger.info(f"module type table: {algo_table}")
self.weights_sd = None
self.loras = self.text_encoder_loras + self.unet_loras
# assertion
names = set()
for lora in self.loras:
assert (
lora.lora_name not in names
), f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def match_fn(self, pattern: str, name: str) -> bool:
if self.USE_FNMATCH:
return fnmatch.fnmatch(name, pattern)
return re.match(pattern, name)
def find_conf_for_name(
self,
name: str,
) -> dict[str, Any]:
if name in self.NAME_ALGO_MAP.keys():
return self.NAME_ALGO_MAP[name]
for key, value in self.NAME_ALGO_MAP.items():
if self.match_fn(key, name):
return value
return None
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location="cpu")
missing, unexpected = self.load_state_dict(self.weights_sd, strict=False)
state = {}
if missing:
state["missing keys"] = missing
if unexpected:
state["unexpected keys"] = unexpected
return state
def apply_to(self, text_encoder, unet, apply_text_encoder=None, apply_unet=None):
assert (
apply_text_encoder is not None and apply_unet is not None
), f"internal error: flag not set"
if apply_text_encoder:
logger.info("enable LyCORIS for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LyCORIS for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
for lora in self.loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
logger.info(f"weights are loaded: {info}")
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
apply_text_encoder = apply_unet = False
for key in weights_sd.keys():
if key.startswith(LycorisNetworkKohya.LORA_PREFIX_TEXT_ENCODER):
apply_text_encoder = True
elif key.startswith(LycorisNetworkKohya.LORA_PREFIX_UNET):
apply_unet = True
if apply_text_encoder:
logger.info("enable LoRA for text encoder")
else:
self.text_encoder_loras = []
if apply_unet:
logger.info("enable LoRA for U-Net")
else:
self.unet_loras = []
self.loras = self.text_encoder_loras + self.unet_loras
super().merge_to(1)
def apply_max_norm_regularization(self, max_norm_value, device):
key_scaled = 0
norms = []
for module in self.unet_loras + self.text_encoder_loras:
scaled, norm = module.apply_max_norm(max_norm_value, device)
if scaled is None:
continue
norms.append(norm)
key_scaled += scaled
if key_scaled == 0:
return 0, 0, 0
return key_scaled, sum(norms) / len(norms), max(norms)
def prepare_optimizer_params(self, text_encoder_lr=None, unet_lr: float = 1e-4, learning_rate=None):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
all_params = []
lr_descriptions = []
if self.text_encoder_loras:
param_data = {"params": enumerate_params(self.text_encoder_loras)}
if text_encoder_lr is not None:
param_data["lr"] = text_encoder_lr
all_params.append(param_data)
lr_descriptions.append("text_encoder")
if self.unet_loras:
param_data = {"params": enumerate_params(self.unet_loras)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
lr_descriptions.append("unet")
return all_params, lr_descriptions
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
#def on_step_start(self):
# pass
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash = precalculate_safetensors_hashes(state_dict)
metadata["sshs_model_hash"] = model_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
|