File size: 10,735 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as parametrize

from ..utils.quant import QuantLinears, log_bypass, log_suspect


class ModuleCustomSD(nn.Module):
    def __init__(self):
        super().__init__()
        self._register_load_state_dict_pre_hook(self.load_weight_prehook)
        self.register_load_state_dict_post_hook(self.load_weight_hook)

    def load_weight_prehook(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        pass

    def load_weight_hook(self, module, incompatible_keys):
        pass

    def custom_state_dict(self):
        return None

    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        # TODO: Remove `args` and the parsing logic when BC allows.
        if len(args) > 0:
            if destination is None:
                destination = args[0]
            if len(args) > 1 and prefix == "":
                prefix = args[1]
            if len(args) > 2 and keep_vars is False:
                keep_vars = args[2]
            # DeprecationWarning is ignored by default

        if destination is None:
            destination = OrderedDict()
            destination._metadata = OrderedDict()

        local_metadata = dict(version=self._version)
        if hasattr(destination, "_metadata"):
            destination._metadata[prefix[:-1]] = local_metadata

        if (custom_sd := self.custom_state_dict()) is not None:
            for k, v in custom_sd.items():
                destination[f"{prefix}{k}"] = v
            return destination
        else:
            return super().state_dict(
                *args, destination=destination, prefix=prefix, keep_vars=keep_vars
            )


class LycorisBaseModule(ModuleCustomSD):
    name: str
    dtype_tensor: torch.Tensor
    support_module = {}
    weight_list = []
    weight_list_det = []

    def __init__(
        self,
        lora_name,
        org_module: nn.Module,
        multiplier=1.0,
        dropout=0.0,
        rank_dropout=0.0,
        module_dropout=0.0,
        rank_dropout_scale=False,
        bypass_mode=None,
        **kwargs,
    ):
        """if alpha == 0 or None, alpha is rank (no scaling)."""
        super().__init__()
        self.lora_name = lora_name
        self.not_supported = False

        self.module = type(org_module)
        if isinstance(org_module, nn.Linear):
            self.module_type = "linear"
            self.shape = (org_module.out_features, org_module.in_features)
            self.op = F.linear
            self.dim = org_module.out_features
            self.kw_dict = {}
        elif isinstance(org_module, nn.Conv1d):
            self.module_type = "conv1d"
            self.shape = (
                org_module.out_channels,
                org_module.in_channels,
                *org_module.kernel_size,
            )
            self.op = F.conv1d
            self.dim = org_module.out_channels
            self.kw_dict = {
                "stride": org_module.stride,
                "padding": org_module.padding,
                "dilation": org_module.dilation,
                "groups": org_module.groups,
            }
        elif isinstance(org_module, nn.Conv2d):
            self.module_type = "conv2d"
            self.shape = (
                org_module.out_channels,
                org_module.in_channels,
                *org_module.kernel_size,
            )
            self.op = F.conv2d
            self.dim = org_module.out_channels
            self.kw_dict = {
                "stride": org_module.stride,
                "padding": org_module.padding,
                "dilation": org_module.dilation,
                "groups": org_module.groups,
            }
        elif isinstance(org_module, nn.Conv3d):
            self.module_type = "conv3d"
            self.shape = (
                org_module.out_channels,
                org_module.in_channels,
                *org_module.kernel_size,
            )
            self.op = F.conv3d
            self.dim = org_module.out_channels
            self.kw_dict = {
                "stride": org_module.stride,
                "padding": org_module.padding,
                "dilation": org_module.dilation,
                "groups": org_module.groups,
            }
        elif isinstance(org_module, nn.LayerNorm):
            self.module_type = "layernorm"
            self.shape = tuple(org_module.normalized_shape)
            self.op = F.layer_norm
            self.dim = org_module.normalized_shape[0]
            self.kw_dict = {
                "normalized_shape": org_module.normalized_shape,
                "eps": org_module.eps,
            }
        elif isinstance(org_module, nn.GroupNorm):
            self.module_type = "groupnorm"
            self.shape = (org_module.num_channels,)
            self.op = F.group_norm
            self.group_num = org_module.num_groups
            self.dim = org_module.num_channels
            self.kw_dict = {"num_groups": org_module.num_groups, "eps": org_module.eps}
        else:
            self.not_supported = True
            self.module_type = "unknown"

        self.register_buffer("dtype_tensor", torch.tensor(0.0), persistent=False)

        self.is_quant = False
        if isinstance(org_module, QuantLinears):
            if not bypass_mode:
                log_bypass()
            self.is_quant = True
            bypass_mode = True
        if (
            isinstance(org_module, nn.Linear)
            and org_module.__class__.__name__ != "Linear"
        ):
            if bypass_mode is None:
                log_suspect()
                bypass_mode = True
            if bypass_mode == True:
                self.is_quant = True
        self.bypass_mode = bypass_mode
        self.dropout = dropout
        self.rank_dropout = rank_dropout
        self.rank_dropout_scale = rank_dropout_scale
        self.module_dropout = module_dropout

        ## Dropout things
        # Since LoKr/LoHa/OFT/BOFT are hard to follow the rank_dropout definition from kohya
        # We redefine the dropout procedure here.
        # g(x) = WX + drop(Brank_drop(AX)) for LoCon(lora), bypass
        # g(x) = WX + drop(ΔWX) for any algo except LoCon(lora), bypass
        # g(x) = (W + Brank_drop(A))X for LoCon(lora), rebuid
        # g(x) = (W + rank_drop(ΔW))X for any algo except LoCon(lora), rebuild
        self.drop = nn.Identity() if dropout == 0 else nn.Dropout(dropout)
        self.rank_drop = (
            nn.Identity() if rank_dropout == 0 else nn.Dropout(rank_dropout)
        )

        self.multiplier = multiplier
        self.org_forward = org_module.forward
        self.org_module = [org_module]

    @classmethod
    def parametrize(cls, org_module, attr, *args, **kwargs):
        from .full import FullModule

        if cls is FullModule:
            raise RuntimeError("FullModule cannot be used for parametrize.")
        target_param = getattr(org_module, attr)
        kwargs["bypass_mode"] = False
        if target_param.dim() == 2:
            proxy_module = nn.Linear(
                target_param.shape[0], target_param.shape[1], bias=False
            )
            proxy_module.weight = target_param
        elif target_param.dim() > 2:
            module_type = [
                None,
                None,
                None,
                nn.Conv1d,
                nn.Conv2d,
                nn.Conv3d,
                None,
                None,
            ][target_param.dim()]
            proxy_module = module_type(
                target_param.shape[0],
                target_param.shape[1],
                *target_param.shape[2:],
                bias=False,
            )
            proxy_module.weight = target_param
        module_obj = cls("", proxy_module, *args, **kwargs)
        module_obj.forward = module_obj.parametrize_forward
        module_obj.to(target_param)
        parametrize.register_parametrization(org_module, attr, module_obj)
        return module_obj

    @classmethod
    def algo_check(cls, state_dict, lora_name):
        return any(f"{lora_name}.{k}" in state_dict for k in cls.weight_list_det)

    @classmethod
    def extract_state_dict(cls, state_dict, lora_name):
        return [state_dict.get(f"{lora_name}.{k}", None) for k in cls.weight_list]

    @classmethod
    def make_module_from_state_dict(cls, lora_name, orig_module, *weights):
        raise NotImplementedError

    @property
    def dtype(self):
        return self.dtype_tensor.dtype

    @property
    def device(self):
        return self.dtype_tensor.device

    @property
    def org_weight(self):
        return self.org_module[0].weight

    @org_weight.setter
    def org_weight(self, value):
        self.org_module[0].weight.data.copy_(value)

    def apply_to(self, **kwargs):
        if self.not_supported:
            return
        self.org_forward = self.org_module[0].forward
        self.org_module[0].forward = self.forward

    def restore(self):
        if self.not_supported:
            return
        self.org_module[0].forward = self.org_forward

    def merge_to(self, multiplier=1.0):
        if self.not_supported:
            return
        self_device = next(self.parameters()).device
        self_dtype = next(self.parameters()).dtype
        self.to(self.org_weight)
        weight, bias = self.get_merged_weight(
            multiplier, self.org_weight.shape, self.org_weight.device
        )
        self.org_weight = weight.to(self.org_weight)
        if bias is not None:
            bias = bias.to(self.org_weight)
            if self.org_module[0].bias is not None:
                self.org_module[0].bias.data.copy_(bias)
            else:
                self.org_module[0].bias = nn.Parameter(bias)
        self.to(self_device, self_dtype)

    def get_diff_weight(self, multiplier=1.0, shape=None, device=None):
        raise NotImplementedError

    def get_merged_weight(self, multiplier=1.0, shape=None, device=None):
        raise NotImplementedError

    @torch.no_grad()
    def apply_max_norm(self, max_norm, device=None):
        return None, None

    def bypass_forward_diff(self, x, scale=1):
        raise NotImplementedError

    def bypass_forward(self, x, scale=1):
        raise NotImplementedError

    def parametrize_forward(self, x: torch.Tensor, *args, **kwargs):
        return self.get_merged_weight(
            multiplier=self.multiplier, shape=x.shape, device=x.device
        )[0].to(x.dtype)

    def forward(self, *args, **kwargs):
        raise NotImplementedError