File size: 7,586 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from functools import cache
from math import log2

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange

from .base import LycorisBaseModule
from ..functional import power2factorization
from ..logging import logger


@cache
def log_butterfly_factorize(dim, factor, result):
    logger.info(
        f"Use BOFT({int(log2(result[1]))}, {result[0]//2})"
        f" (equivalent to factor={result[0]}) "
        f"for {dim=} and {factor=}"
    )


def butterfly_factor(dimension: int, factor: int = -1) -> tuple[int, int]:
    m, n = power2factorization(dimension, factor)

    if n == 0:
        raise ValueError(
            f"It is impossible to decompose {dimension} with factor {factor} under BOFT constraints."
        )

    log_butterfly_factorize(dimension, factor, (m, n))
    return m, n


class ButterflyOFTModule(LycorisBaseModule):
    name = "boft"
    support_module = {
        "linear",
        "conv1d",
        "conv2d",
        "conv3d",
    }
    weight_list = [
        "oft_blocks",
        "rescale",
        "alpha",
    ]
    weight_list_det = ["oft_blocks"]

    def __init__(
        self,
        lora_name,
        org_module: nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        dropout=0.0,
        rank_dropout=0.0,
        module_dropout=0.0,
        use_tucker=False,
        use_scalar=False,
        rank_dropout_scale=False,
        constraint=0,
        rescaled=False,
        bypass_mode=None,
        **kwargs,
    ):
        super().__init__(
            lora_name,
            org_module,
            multiplier,
            dropout,
            rank_dropout,
            module_dropout,
            rank_dropout_scale,
            bypass_mode,
        )
        if self.module_type not in self.support_module:
            raise ValueError(f"{self.module_type} is not supported in BOFT algo.")

        out_dim = self.dim
        b, m_exp = butterfly_factor(out_dim, lora_dim)
        self.block_size = b
        self.block_num = m_exp
        # BOFT(m, b)
        self.boft_b = b
        self.boft_m = sum(int(i) for i in f"{m_exp-1:b}") + 1
        # block_num > block_size
        self.rescaled = rescaled
        self.constraint = constraint * out_dim
        self.register_buffer("alpha", torch.tensor(constraint))
        self.oft_blocks = nn.Parameter(
            torch.zeros(self.boft_m, self.block_num, self.block_size, self.block_size)
        )
        if rescaled:
            self.rescale = nn.Parameter(
                torch.ones(out_dim, *(1 for _ in range(org_module.weight.dim() - 1)))
            )

    @classmethod
    def algo_check(cls, state_dict, lora_name):
        if f"{lora_name}.oft_blocks" in state_dict:
            oft_blocks = state_dict[f"{lora_name}.oft_blocks"]
            if oft_blocks.ndim == 4:
                return True
        return False

    @classmethod
    def make_module_from_state_dict(
        cls, lora_name, orig_module, oft_blocks, rescale, alpha
    ):
        m, n, s, _ = oft_blocks.shape
        module = cls(
            lora_name,
            orig_module,
            1,
            lora_dim=s,
            constraint=float(alpha),
            rescaled=rescale is not None,
        )
        module.oft_blocks.copy_(oft_blocks)
        if rescale is not None:
            module.rescale.copy_(rescale)
        return module

    @property
    def I(self):
        return torch.eye(self.block_size, device=self.device)

    def get_r(self):
        I = self.I
        # for Q = -Q^T
        q = self.oft_blocks - self.oft_blocks.transpose(-1, -2)
        normed_q = q
        # Diag OFT style constrain
        if self.constraint > 0:
            q_norm = torch.norm(q) + 1e-8
            if q_norm > self.constraint:
                normed_q = q * self.constraint / q_norm
        # use float() to prevent unsupported type
        r = (I + normed_q) @ (I - normed_q).float().inverse()
        return r

    def make_weight(self, scale=1, device=None, diff=False):
        m = self.boft_m
        b = self.boft_b
        r_b = b // 2
        r = self.get_r()
        inp = org = self.org_weight.to(device, dtype=r.dtype)

        for i in range(m):
            bi = r[i]  # b_num, b_size, b_size
            g = 2
            k = 2**i * r_b
            if scale != 1:
                bi = bi * scale + (1 - scale) * self.I
            inp = (
                inp.unflatten(-1, (-1, g, k))
                .transpose(-2, -1)
                .flatten(-3)
                .unflatten(-1, (-1, b))
            )
            inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
            inp = (
                inp.flatten(-2).unflatten(-1, (-1, k, g)).transpose(-2, -1).flatten(-3)
            )

        if self.rescaled:
            inp = inp * self.rescale

        if diff:
            inp = inp - org

        return inp.to(self.oft_blocks.dtype)

    def get_diff_weight(self, multiplier=1, shape=None, device=None):
        diff = self.make_weight(scale=multiplier, device=device, diff=True)
        if shape is not None:
            diff = diff.view(shape)
        return diff, None

    def get_merged_weight(self, multiplier=1, shape=None, device=None):
        diff = self.make_weight(scale=multiplier, device=device)
        if shape is not None:
            diff = diff.view(shape)
        return diff, None

    @torch.no_grad()
    def apply_max_norm(self, max_norm, device=None):
        orig_norm = self.oft_blocks.to(device).norm()
        norm = torch.clamp(orig_norm, max_norm / 2)
        desired = torch.clamp(norm, max=max_norm)
        ratio = desired / norm

        scaled = norm != desired
        if scaled:
            self.oft_blocks *= ratio

        return scaled, orig_norm * ratio

    def _bypass_forward(self, x, scale=1, diff=False):
        m = self.boft_m
        b = self.boft_b
        r_b = b // 2
        r = self.get_r()
        inp = org = self.org_forward(x)
        if self.op in {F.conv2d, F.conv1d, F.conv3d}:
            inp = inp.transpose(1, -1)

        for i in range(m):
            bi = r[i]  # b_num, b_size, b_size
            g = 2
            k = 2**i * r_b
            if scale != 1:
                bi = bi * scale + (1 - scale) * self.I
            inp = (
                inp.unflatten(-1, (-1, g, k))
                .transpose(-2, -1)
                .flatten(-3)
                .unflatten(-1, (-1, b))
            )
            inp = torch.einsum("b i j, ... b j -> ... b i", bi, inp)
            inp = (
                inp.flatten(-2).unflatten(-1, (-1, k, g)).transpose(-2, -1).flatten(-3)
            )

        if self.rescaled:
            inp = inp * self.rescale.transpose(0, -1)

        if self.op in {F.conv2d, F.conv1d, F.conv3d}:
            inp = inp.transpose(1, -1)

        if diff:
            inp = inp - org
        return inp

    def bypass_forward_diff(self, x, scale=1):
        return self._bypass_forward(x, scale, diff=True)

    def bypass_forward(self, x, scale=1):
        return self._bypass_forward(x, scale, diff=False)

    def forward(self, x, *args, **kwargs):
        if self.module_dropout and self.training:
            if torch.rand(1) < self.module_dropout:
                return self.org_forward(x)
        scale = self.multiplier

        if self.bypass_mode:
            return self.bypass_forward(x, scale)
        else:
            w = self.make_weight(scale, x.device)
            kw_dict = self.kw_dict | {"weight": w, "bias": self.org_module[0].bias}
            return self.op(x, **kw_dict)