File size: 11,590 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import math

import torch
import torch.nn as nn

from .base import LycorisBaseModule
from ..functional.loha import diff_weight as loha_diff_weight


class LohaModule(LycorisBaseModule):
    name = "loha"
    support_module = {
        "linear",
        "conv1d",
        "conv2d",
        "conv3d",
    }
    weight_list = [
        "hada_w1_a",
        "hada_w1_b",
        "hada_w2_a",
        "hada_w2_b",
        "hada_t1",
        "hada_t2",
        "alpha",
        "dora_scale",
    ]
    weight_list_det = ["hada_w1_a"]

    def __init__(
        self,
        lora_name,
        org_module: nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        dropout=0.0,
        rank_dropout=0.0,
        module_dropout=0.0,
        use_tucker=False,
        use_scalar=False,
        rank_dropout_scale=False,
        weight_decompose=False,
        wd_on_out=False,
        bypass_mode=None,
        rs_lora=False,
        **kwargs,
    ):
        super().__init__(
            lora_name,
            org_module,
            multiplier,
            dropout,
            rank_dropout,
            module_dropout,
            rank_dropout_scale,
            bypass_mode,
        )
        if self.module_type not in self.support_module:
            raise ValueError(f"{self.module_type} is not supported in LoHa algo.")
        self.lora_name = lora_name
        self.lora_dim = lora_dim
        self.tucker = False
        self.rs_lora = rs_lora

        w_shape = self.shape
        if self.module_type.startswith("conv"):
            in_dim = org_module.in_channels
            k_size = org_module.kernel_size
            out_dim = org_module.out_channels
            self.shape = (out_dim, in_dim, *k_size)
            self.tucker = use_tucker and any(i != 1 for i in k_size)
            if self.tucker:
                w_shape = (out_dim, in_dim, *k_size)
            else:
                w_shape = (out_dim, in_dim * torch.tensor(k_size).prod().item())

        if self.tucker:
            self.hada_t1 = nn.Parameter(torch.empty(lora_dim, lora_dim, *w_shape[2:]))
            self.hada_w1_a = nn.Parameter(
                torch.empty(lora_dim, w_shape[0])
            )  # out_dim, 1-mode
            self.hada_w1_b = nn.Parameter(
                torch.empty(lora_dim, w_shape[1])
            )  # in_dim , 2-mode

            self.hada_t2 = nn.Parameter(torch.empty(lora_dim, lora_dim, *w_shape[2:]))
            self.hada_w2_a = nn.Parameter(
                torch.empty(lora_dim, w_shape[0])
            )  # out_dim, 1-mode
            self.hada_w2_b = nn.Parameter(
                torch.empty(lora_dim, w_shape[1])
            )  # in_dim , 2-mode
        else:
            self.hada_w1_a = nn.Parameter(torch.empty(w_shape[0], lora_dim))
            self.hada_w1_b = nn.Parameter(torch.empty(lora_dim, w_shape[1]))

            self.hada_w2_a = nn.Parameter(torch.empty(w_shape[0], lora_dim))
            self.hada_w2_b = nn.Parameter(torch.empty(lora_dim, w_shape[1]))

        self.wd = weight_decompose
        self.wd_on_out = wd_on_out
        if self.wd:
            org_weight = org_module.weight.cpu().clone().float()
            self.dora_norm_dims = org_weight.dim() - 1
            if self.wd_on_out:
                self.dora_scale = nn.Parameter(
                    torch.norm(
                        org_weight.reshape(org_weight.shape[0], -1),
                        dim=1,
                        keepdim=True,
                    ).reshape(org_weight.shape[0], *[1] * self.dora_norm_dims)
                ).float()
            else:
                self.dora_scale = nn.Parameter(
                    torch.norm(
                        org_weight.transpose(1, 0).reshape(org_weight.shape[1], -1),
                        dim=1,
                        keepdim=True,
                    )
                    .reshape(org_weight.shape[1], *[1] * self.dora_norm_dims)
                    .transpose(1, 0)
                ).float()

        if self.dropout:
            print("[WARN]LoHa/LoKr haven't implemented normal dropout yet.")

        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = lora_dim if alpha is None or alpha == 0 else alpha

        r_factor = lora_dim
        if self.rs_lora:
            r_factor = math.sqrt(r_factor)

        self.scale = alpha / r_factor

        self.register_buffer("alpha", torch.tensor(alpha * (lora_dim / r_factor)))

        if use_scalar:
            self.scalar = nn.Parameter(torch.tensor(0.0))
        else:
            self.register_buffer("scalar", torch.tensor(1.0), persistent=False)
        # Need more experiments on init method
        if self.tucker:
            torch.nn.init.normal_(self.hada_t1, std=0.1)
            torch.nn.init.normal_(self.hada_t2, std=0.1)
        torch.nn.init.normal_(self.hada_w1_b, std=1)
        torch.nn.init.normal_(self.hada_w1_a, std=0.1)
        torch.nn.init.normal_(self.hada_w2_b, std=1)
        if use_scalar:
            torch.nn.init.normal_(self.hada_w2_a, std=0.1)
        else:
            torch.nn.init.constant_(self.hada_w2_a, 0)

    @classmethod
    def make_module_from_state_dict(
        cls, lora_name, orig_module, w1a, w1b, w2a, w2b, t1, t2, alpha, dora_scale
    ):
        module = cls(
            lora_name,
            orig_module,
            1,
            w1b.size(0),
            float(alpha),
            use_tucker=t1 is not None,
            weight_decompose=dora_scale is not None,
        )
        module.hada_w1_a.copy_(w1a)
        module.hada_w1_b.copy_(w1b)
        module.hada_w2_a.copy_(w2a)
        module.hada_w2_b.copy_(w2b)
        if t1 is not None:
            module.hada_t1.copy_(t1)
            module.hada_t2.copy_(t2)
        if dora_scale is not None:
            module.dora_scale.copy_(dora_scale)
        return module

    def load_weight_hook(self, module: nn.Module, incompatible_keys):
        missing_keys = incompatible_keys.missing_keys
        for key in missing_keys:
            if "scalar" in key:
                del missing_keys[missing_keys.index(key)]
        if isinstance(self.scalar, nn.Parameter):
            self.scalar.data.copy_(torch.ones_like(self.scalar))
        elif getattr(self, "scalar", None) is not None:
            self.scalar.copy_(torch.ones_like(self.scalar))
        else:
            self.register_buffer(
                "scalar", torch.ones_like(self.scalar), persistent=False
            )

    def get_weight(self, shape):
        scale = torch.tensor(
            self.scale, dtype=self.hada_w1_b.dtype, device=self.hada_w1_b.device
        )
        if self.tucker:
            weight = loha_diff_weight(
                self.hada_w1_b,
                self.hada_w1_a,
                self.hada_w2_b,
                self.hada_w2_a,
                self.hada_t1,
                self.hada_t2,
                gamma=scale,
            )
        else:
            weight = loha_diff_weight(
                self.hada_w1_b,
                self.hada_w1_a,
                self.hada_w2_b,
                self.hada_w2_a,
                None,
                None,
                gamma=scale,
            )
        if shape is not None:
            weight = weight.reshape(shape)
        if self.training and self.rank_dropout:
            drop = (torch.rand(weight.size(0)) > self.rank_dropout).to(weight.dtype)
            drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
            if self.rank_dropout_scale:
                drop /= drop.mean()
            weight *= drop
        return weight

    def get_diff_weight(self, multiplier=1, shape=None, device=None):
        scale = self.scale * multiplier
        diff = self.get_weight(shape) * scale
        if device is not None:
            diff = diff.to(device)
        return diff, None

    def get_merged_weight(self, multiplier=1, shape=None, device=None):
        diff = self.get_diff_weight(multiplier=1, shape=shape, device=device)[0]
        weight = self.org_weight
        if self.wd:
            merged = self.apply_weight_decompose(weight + diff, multiplier)
        else:
            merged = weight + diff * multiplier
        return merged, None

    def apply_weight_decompose(self, weight, multiplier=1):
        weight = weight.to(self.dora_scale.dtype)
        if self.wd_on_out:
            weight_norm = (
                weight.reshape(weight.shape[0], -1)
                .norm(dim=1)
                .reshape(weight.shape[0], *[1] * self.dora_norm_dims)
            ) + torch.finfo(weight.dtype).eps
        else:
            weight_norm = (
                weight.transpose(0, 1)
                .reshape(weight.shape[1], -1)
                .norm(dim=1, keepdim=True)
                .reshape(weight.shape[1], *[1] * self.dora_norm_dims)
                .transpose(0, 1)
            ) + torch.finfo(weight.dtype).eps

        scale = self.dora_scale.to(weight.device) / weight_norm
        if multiplier != 1:
            scale = multiplier * (scale - 1) + 1

        return weight * scale

    def custom_state_dict(self):
        destination = {}
        destination["alpha"] = self.alpha
        if self.wd:
            destination["dora_scale"] = self.dora_scale
        destination["hada_w1_a"] = self.hada_w1_a * self.scalar
        destination["hada_w1_b"] = self.hada_w1_b
        destination["hada_w2_a"] = self.hada_w2_a
        destination["hada_w2_b"] = self.hada_w2_b
        if self.tucker:
            destination["hada_t1"] = self.hada_t1
            destination["hada_t2"] = self.hada_t2
        return destination

    @torch.no_grad()
    def apply_max_norm(self, max_norm, device=None):
        orig_norm = (self.get_weight(self.shape) * self.scalar).norm()
        norm = torch.clamp(orig_norm, max_norm / 2)
        desired = torch.clamp(norm, max=max_norm)
        ratio = desired.cpu() / norm.cpu()

        scaled = norm != desired
        if scaled:
            self.scalar *= ratio

        return scaled, orig_norm * ratio

    def bypass_forward_diff(self, x, scale=1):
        diff_weight = self.get_weight(self.shape) * self.scalar * scale
        return self.drop(self.op(x, diff_weight, **self.kw_dict))

    def bypass_forward(self, x, scale=1):
        return self.org_forward(x) + self.bypass_forward_diff(x, scale=scale)

    def forward(self, x: torch.Tensor, *args, **kwargs):
        if self.module_dropout and self.training:
            if torch.rand(1) < self.module_dropout:
                return self.op(
                    x,
                    self.org_module[0].weight.data,
                    (
                        None
                        if self.org_module[0].bias is None
                        else self.org_module[0].bias.data
                    ),
                )
        if self.bypass_mode:
            return self.bypass_forward(x, scale=self.multiplier)
        else:
            diff_weight = self.get_weight(self.shape).to(self.dtype) * self.scalar
            weight = self.org_module[0].weight.data.to(self.dtype)
            if self.wd:
                weight = self.apply_weight_decompose(
                    weight + diff_weight, self.multiplier
                )
            else:
                weight = weight + diff_weight * self.multiplier
            bias = (
                None
                if self.org_module[0].bias is None
                else self.org_module[0].bias.data
            )
            return self.op(x, weight, bias, **self.kw_dict)