File size: 21,006 Bytes
cc69848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import math
from functools import cache
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base import LycorisBaseModule
from ..functional import factorization, rebuild_tucker
from ..functional.lokr import make_kron
from ..logging import logger
@cache
def logging_force_full_matrix(lora_dim, dim, factor):
logger.warning(
f"lora_dim {lora_dim} is too large for"
f" dim={dim} and {factor=}"
", using full matrix mode."
)
class LokrModule(LycorisBaseModule):
name = "kron"
support_module = {
"linear",
"conv1d",
"conv2d",
"conv3d",
}
weight_list = [
"lokr_w1",
"lokr_w1_a",
"lokr_w1_b",
"lokr_w2",
"lokr_w2_a",
"lokr_w2_b",
"lokr_t1",
"lokr_t2",
"alpha",
"dora_scale",
]
weight_list_det = ["lokr_w1", "lokr_w1_a"]
def __init__(
self,
lora_name,
org_module: nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=0.0,
rank_dropout=0.0,
module_dropout=0.0,
use_tucker=False,
use_scalar=False,
decompose_both=False,
factor: int = -1, # factorization factor
rank_dropout_scale=False,
weight_decompose=False,
wd_on_out=False,
full_matrix=False,
bypass_mode=None,
rs_lora=False,
unbalanced_factorization=False,
**kwargs,
):
super().__init__(
lora_name,
org_module,
multiplier,
dropout,
rank_dropout,
module_dropout,
rank_dropout_scale,
bypass_mode,
)
if self.module_type not in self.support_module:
raise ValueError(f"{self.module_type} is not supported in LoKr algo.")
factor = int(factor)
self.lora_dim = lora_dim
self.tucker = False
self.use_w1 = False
self.use_w2 = False
self.full_matrix = full_matrix
self.rs_lora = rs_lora
if self.module_type.startswith("conv"):
in_dim = org_module.in_channels
k_size = org_module.kernel_size
out_dim = org_module.out_channels
self.shape = (out_dim, in_dim, *k_size)
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
if unbalanced_factorization:
out_l, out_k = out_k, out_l
shape = ((out_l, out_k), (in_m, in_n), *k_size) # ((a, b), (c, d), *k_size)
self.tucker = use_tucker and any(i != 1 for i in k_size)
if (
decompose_both
and lora_dim < max(shape[0][0], shape[1][0]) / 2
and not self.full_matrix
):
self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(
torch.empty(shape[0][0], shape[1][0])
) # a*c, 1-mode
if lora_dim >= max(shape[0][1], shape[1][1]) / 2 or self.full_matrix:
if not self.full_matrix:
logging_force_full_matrix(lora_dim, max(in_dim, out_dim), factor)
self.use_w2 = True
self.lokr_w2 = nn.Parameter(
torch.empty(shape[0][1], shape[1][1], *k_size)
)
elif self.tucker:
self.lokr_t2 = nn.Parameter(torch.empty(lora_dim, lora_dim, *shape[2:]))
self.lokr_w2_a = nn.Parameter(
torch.empty(lora_dim, shape[0][1])
) # b, 1-mode
self.lokr_w2_b = nn.Parameter(
torch.empty(lora_dim, shape[1][1])
) # d, 2-mode
else: # Conv2d not tucker
# bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(
torch.empty(
lora_dim, shape[1][1] * torch.tensor(shape[2:]).prod().item()
)
)
# w1 β (w2_a x w2_b) = (a, b)β((c, dim)x(dim, d*k1*k2)) = (a, b)β(c, d*k1*k2) = (ac, bd*k1*k2)
else: # Linear
in_dim = org_module.in_features
out_dim = org_module.out_features
self.shape = (out_dim, in_dim)
in_m, in_n = factorization(in_dim, factor)
out_l, out_k = factorization(out_dim, factor)
if unbalanced_factorization:
out_l, out_k = out_k, out_l
shape = (
(out_l, out_k),
(in_m, in_n),
) # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
# smaller part. weight scale
if (
decompose_both
and lora_dim < max(shape[0][0], shape[1][0]) / 2
and not self.full_matrix
):
self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
else:
self.use_w1 = True
self.lokr_w1 = nn.Parameter(
torch.empty(shape[0][0], shape[1][0])
) # a*c, 1-mode
if lora_dim < max(shape[0][1], shape[1][1]) / 2 and not self.full_matrix:
# bigger part. weight and LoRA. [b, dim] x [dim, d]
self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
self.lokr_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1][1]))
# w1 β (w2_a x w2_b) = (a, b)β((c, dim)x(dim, d)) = (a, b)β(c, d) = (ac, bd)
else:
if not self.full_matrix:
logging_force_full_matrix(lora_dim, max(in_dim, out_dim), factor)
self.use_w2 = True
self.lokr_w2 = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))
self.wd = weight_decompose
self.wd_on_out = wd_on_out
if self.wd:
org_weight = org_module.weight.cpu().clone().float()
self.dora_norm_dims = org_weight.dim() - 1
if self.wd_on_out:
self.dora_scale = nn.Parameter(
torch.norm(
org_weight.reshape(org_weight.shape[0], -1),
dim=1,
keepdim=True,
).reshape(org_weight.shape[0], *[1] * self.dora_norm_dims)
).float()
else:
self.dora_scale = nn.Parameter(
torch.norm(
org_weight.transpose(1, 0).reshape(org_weight.shape[1], -1),
dim=1,
keepdim=True,
)
.reshape(org_weight.shape[1], *[1] * self.dora_norm_dims)
.transpose(1, 0)
).float()
self.dropout = dropout
if dropout:
print("[WARN]LoHa/LoKr haven't implemented normal dropout yet.")
self.rank_dropout = rank_dropout
self.rank_dropout_scale = rank_dropout_scale
self.module_dropout = module_dropout
if isinstance(alpha, torch.Tensor):
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = lora_dim if alpha is None or alpha == 0 else alpha
if self.use_w2 and self.use_w1:
# use scale = 1
alpha = lora_dim
r_factor = lora_dim
if self.rs_lora:
r_factor = math.sqrt(r_factor)
self.scale = alpha / r_factor
self.register_buffer("alpha", torch.tensor(alpha * (lora_dim / r_factor)))
if use_scalar:
self.scalar = nn.Parameter(torch.tensor(0.0))
else:
self.register_buffer("scalar", torch.tensor(1.0), persistent=False)
if self.use_w2:
if use_scalar:
torch.nn.init.kaiming_uniform_(self.lokr_w2, a=math.sqrt(5))
else:
torch.nn.init.constant_(self.lokr_w2, 0)
else:
if self.tucker:
torch.nn.init.kaiming_uniform_(self.lokr_t2, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w2_a, a=math.sqrt(5))
if use_scalar:
torch.nn.init.kaiming_uniform_(self.lokr_w2_b, a=math.sqrt(5))
else:
torch.nn.init.constant_(self.lokr_w2_b, 0)
if self.use_w1:
torch.nn.init.kaiming_uniform_(self.lokr_w1, a=math.sqrt(5))
else:
torch.nn.init.kaiming_uniform_(self.lokr_w1_a, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(self.lokr_w1_b, a=math.sqrt(5))
@classmethod
def make_module_from_state_dict(
cls,
lora_name,
orig_module,
w1,
w1a,
w1b,
w2,
w2a,
w2b,
_,
t2,
alpha,
dora_scale,
):
full_matrix = False
if w1a is not None:
lora_dim = w1a.size(1)
elif w2a is not None:
lora_dim = w2a.size(1)
else:
full_matrix = True
lora_dim = 1
if w1 is None:
out_dim = w1a.size(0)
in_dim = w1b.size(1)
else:
out_dim, in_dim = w1.shape
shape_s = [out_dim, in_dim]
if w2 is None:
out_dim *= w2a.size(0)
in_dim *= w2b.size(1)
else:
out_dim *= w2.size(0)
in_dim *= w2.size(1)
if (
shape_s[0] == factorization(out_dim, -1)[0]
and shape_s[1] == factorization(in_dim, -1)[0]
):
factor = -1
else:
w1_shape = w1.shape if w1 is not None else (w1a.size(0), w1b.size(1))
w2_shape = w2.shape if w2 is not None else (w2a.size(0), w2b.size(1))
shape_group_1 = (w1_shape[0], w2_shape[0])
shape_group_2 = (w1_shape[1], w2_shape[1])
w_shape = (w1_shape[0] * w2_shape[0], w1_shape[1] * w2_shape[1])
factor1 = max(w1.shape) if w1 is not None else max(w1a.size(0), w1b.size(1))
factor2 = max(w2.shape) if w2 is not None else max(w2a.size(0), w2b.size(1))
if (
w_shape[0] % factor1 == 0
and w_shape[1] % factor1 == 0
and factor1 in shape_group_1
and factor1 in shape_group_2
):
factor = factor1
elif (
w_shape[0] % factor2 == 0
and w_shape[1] % factor2 == 0
and factor2 in shape_group_1
and factor2 in shape_group_2
):
factor = factor2
else:
factor = min(factor1, factor2)
module = cls(
lora_name,
orig_module,
1,
lora_dim,
float(alpha),
use_tucker=t2 is not None,
decompose_both=w1 is None and w2 is None,
factor=factor,
weight_decompose=dora_scale is not None,
full_matrix=full_matrix,
)
if w1 is not None:
module.lokr_w1.copy_(w1)
else:
module.lokr_w1_a.copy_(w1a)
module.lokr_w1_b.copy_(w1b)
if w2 is not None:
module.lokr_w2.copy_(w2)
else:
module.lokr_w2_a.copy_(w2a)
module.lokr_w2_b.copy_(w2b)
if t2 is not None:
module.lokr_t2.copy_(t2)
if dora_scale is not None:
module.dora_scale.copy_(dora_scale)
return module
def load_weight_hook(self, module: nn.Module, incompatible_keys):
missing_keys = incompatible_keys.missing_keys
for key in missing_keys:
if "scalar" in key:
del missing_keys[missing_keys.index(key)]
if isinstance(self.scalar, nn.Parameter):
self.scalar.data.copy_(torch.ones_like(self.scalar))
elif getattr(self, "scalar", None) is not None:
self.scalar.copy_(torch.ones_like(self.scalar))
else:
self.register_buffer(
"scalar", torch.ones_like(self.scalar), persistent=False
)
def get_weight(self, shape):
weight = make_kron(
self.lokr_w1 if self.use_w1 else self.lokr_w1_a @ self.lokr_w1_b,
(
self.lokr_w2
if self.use_w2
else (
rebuild_tucker(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b)
if self.tucker
else self.lokr_w2_a @ self.lokr_w2_b
)
),
self.scale,
)
dtype = weight.dtype
if shape is not None:
weight = weight.view(shape)
if self.training and self.rank_dropout:
drop = (torch.rand(weight.size(0)) > self.rank_dropout).to(dtype)
drop = drop.view(-1, *[1] * len(weight.shape[1:]))
if self.rank_dropout_scale:
drop /= drop.mean()
weight *= drop
return weight
def get_diff_weight(self, multiplier=1, shape=None, device=None):
scale = self.scale * multiplier
diff = self.get_weight(shape) * scale
if device is not None:
diff = diff.to(device)
return diff, None
def get_merged_weight(self, multiplier=1, shape=None, device=None):
diff = self.get_diff_weight(multiplier=1, shape=shape, device=device)[0]
weight = self.org_weight
if self.wd:
merged = self.apply_weight_decompose(weight + diff, multiplier)
else:
merged = weight + diff * multiplier
return merged, None
def apply_weight_decompose(self, weight, multiplier=1):
weight = weight.to(self.dora_scale.dtype)
if self.wd_on_out:
weight_norm = (
weight.reshape(weight.shape[0], -1)
.norm(dim=1)
.reshape(weight.shape[0], *[1] * self.dora_norm_dims)
) + torch.finfo(weight.dtype).eps
else:
weight_norm = (
weight.transpose(0, 1)
.reshape(weight.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight.shape[1], *[1] * self.dora_norm_dims)
.transpose(0, 1)
) + torch.finfo(weight.dtype).eps
scale = self.dora_scale.to(weight.device) / weight_norm
if multiplier != 1:
scale = multiplier * (scale - 1) + 1
return weight * scale
def custom_state_dict(self):
destination = {}
destination["alpha"] = self.alpha
if self.wd:
destination["dora_scale"] = self.dora_scale
if self.use_w1:
destination["lokr_w1"] = self.lokr_w1 * self.scalar
else:
destination["lokr_w1_a"] = self.lokr_w1_a * self.scalar
destination["lokr_w1_b"] = self.lokr_w1_b
if self.use_w2:
destination["lokr_w2"] = self.lokr_w2
else:
destination["lokr_w2_a"] = self.lokr_w2_a
destination["lokr_w2_b"] = self.lokr_w2_b
if self.tucker:
destination["lokr_t2"] = self.lokr_t2
return destination
@torch.no_grad()
def apply_max_norm(self, max_norm, device=None):
orig_norm = self.get_weight(self.shape).norm()
norm = torch.clamp(orig_norm, max_norm / 2)
desired = torch.clamp(norm, max=max_norm)
ratio = desired.cpu() / norm.cpu()
scaled = norm != desired
if scaled:
modules = 4 - self.use_w1 - self.use_w2 + (not self.use_w2 and self.tucker)
if self.use_w1:
self.lokr_w1 *= ratio ** (1 / modules)
else:
self.lokr_w1_a *= ratio ** (1 / modules)
self.lokr_w1_b *= ratio ** (1 / modules)
if self.use_w2:
self.lokr_w2 *= ratio ** (1 / modules)
else:
if self.tucker:
self.lokr_t2 *= ratio ** (1 / modules)
self.lokr_w2_a *= ratio ** (1 / modules)
self.lokr_w2_b *= ratio ** (1 / modules)
return scaled, orig_norm * ratio
def bypass_forward_diff(self, h, scale=1):
is_conv = self.module_type.startswith("conv")
if self.use_w2:
ba = self.lokr_w2
else:
a = self.lokr_w2_b
b = self.lokr_w2_a
if self.tucker:
t = self.lokr_t2
a = a.view(*a.shape, *[1] * (len(t.shape) - 2))
b = b.view(*b.shape, *[1] * (len(t.shape) - 2))
elif is_conv:
a = a.view(*a.shape, *self.shape[2:])
b = b.view(*b.shape, *[1] * (len(self.shape) - 2))
if self.use_w1:
c = self.lokr_w1
else:
c = self.lokr_w1_a @ self.lokr_w1_b
uq = c.size(1)
if is_conv:
# (b, uq), vq, ...
b, _, *rest = h.shape
h_in_group = h.reshape(b * uq, -1, *rest)
else:
# b, ..., uq, vq
h_in_group = h.reshape(*h.shape[:-1], uq, -1)
if self.use_w2:
hb = self.op(h_in_group, ba, **self.kw_dict)
else:
if is_conv:
if self.tucker:
ha = self.op(h_in_group, a)
ht = self.op(ha, t, **self.kw_dict)
hb = self.op(ht, b)
else:
ha = self.op(h_in_group, a, **self.kw_dict)
hb = self.op(ha, b)
else:
ha = self.op(h_in_group, a, **self.kw_dict)
hb = self.op(ha, b)
if is_conv:
# (b, uq), vp, ..., f
# -> b, uq, vp, ..., f
# -> b, f, vp, ..., uq
hb = hb.view(b, -1, *hb.shape[1:])
h_cross_group = hb.transpose(1, -1)
else:
# b, ..., uq, vq
# -> b, ..., vq, uq
h_cross_group = hb.transpose(-1, -2)
hc = F.linear(h_cross_group, c)
if is_conv:
# b, f, vp, ..., up
# -> b, up, vp, ... ,f
# -> b, c, ..., f
hc = hc.transpose(1, -1)
h = hc.reshape(b, -1, *hc.shape[3:])
else:
# b, ..., vp, up
# -> b, ..., up, vp
# -> b, ..., c
hc = hc.transpose(-1, -2)
h = hc.reshape(*hc.shape[:-2], -1)
return self.drop(h * scale * self.scalar)
def bypass_forward(self, x, scale=1):
return self.org_forward(x) + self.bypass_forward_diff(x, scale=scale)
def forward(self, x: torch.Tensor, *args, **kwargs):
if self.module_dropout and self.training:
if torch.rand(1) < self.module_dropout:
return self.org_forward(x)
if self.bypass_mode:
return self.bypass_forward(x, self.multiplier)
else:
diff_weight = self.get_weight(self.shape).to(self.dtype) * self.scalar
weight = self.org_module[0].weight.data.to(self.dtype)
if self.wd:
weight = self.apply_weight_decompose(
weight + diff_weight, self.multiplier
)
elif self.multiplier == 1:
weight = weight + diff_weight
else:
weight = weight + diff_weight * self.multiplier
bias = (
None
if self.org_module[0].bias is None
else self.org_module[0].bias.data
)
return self.op(x, weight, bias, **self.kw_dict)
if __name__ == "__main__":
base = nn.Conv2d(128, 128, 3, 1, 1)
net = LokrModule(
"",
base,
multiplier=1,
lora_dim=4,
alpha=1,
weight_decompose=False,
use_tucker=False,
use_scalar=False,
decompose_both=True,
)
net.apply_to()
sd = net.state_dict()
for key in sd:
if key != "alpha":
sd[key] = torch.randn_like(sd[key])
net.load_state_dict(sd)
test_input = torch.randn(1, 128, 16, 16)
test_output = net(test_input)
print(test_output.shape)
net2 = LokrModule(
"",
base,
multiplier=1,
lora_dim=4,
alpha=1,
weight_decompose=False,
use_tucker=False,
use_scalar=False,
bypass_mode=True,
decompose_both=True,
)
net2.apply_to()
net2.load_state_dict(sd)
print(net2)
test_output2 = net(test_input)
print(F.mse_loss(test_output, test_output2))
|