File size: 21,006 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
import math
from functools import cache

import torch
import torch.nn as nn
import torch.nn.functional as F

from .base import LycorisBaseModule
from ..functional import factorization, rebuild_tucker
from ..functional.lokr import make_kron
from ..logging import logger


@cache
def logging_force_full_matrix(lora_dim, dim, factor):
    logger.warning(
        f"lora_dim {lora_dim} is too large for"
        f" dim={dim} and {factor=}"
        ", using full matrix mode."
    )


class LokrModule(LycorisBaseModule):
    name = "kron"
    support_module = {
        "linear",
        "conv1d",
        "conv2d",
        "conv3d",
    }
    weight_list = [
        "lokr_w1",
        "lokr_w1_a",
        "lokr_w1_b",
        "lokr_w2",
        "lokr_w2_a",
        "lokr_w2_b",
        "lokr_t1",
        "lokr_t2",
        "alpha",
        "dora_scale",
    ]
    weight_list_det = ["lokr_w1", "lokr_w1_a"]

    def __init__(
        self,
        lora_name,
        org_module: nn.Module,
        multiplier=1.0,
        lora_dim=4,
        alpha=1,
        dropout=0.0,
        rank_dropout=0.0,
        module_dropout=0.0,
        use_tucker=False,
        use_scalar=False,
        decompose_both=False,
        factor: int = -1,  # factorization factor
        rank_dropout_scale=False,
        weight_decompose=False,
        wd_on_out=False,
        full_matrix=False,
        bypass_mode=None,
        rs_lora=False,
        unbalanced_factorization=False,
        **kwargs,
    ):
        super().__init__(
            lora_name,
            org_module,
            multiplier,
            dropout,
            rank_dropout,
            module_dropout,
            rank_dropout_scale,
            bypass_mode,
        )
        if self.module_type not in self.support_module:
            raise ValueError(f"{self.module_type} is not supported in LoKr algo.")

        factor = int(factor)
        self.lora_dim = lora_dim
        self.tucker = False
        self.use_w1 = False
        self.use_w2 = False
        self.full_matrix = full_matrix
        self.rs_lora = rs_lora

        if self.module_type.startswith("conv"):
            in_dim = org_module.in_channels
            k_size = org_module.kernel_size
            out_dim = org_module.out_channels
            self.shape = (out_dim, in_dim, *k_size)

            in_m, in_n = factorization(in_dim, factor)
            out_l, out_k = factorization(out_dim, factor)
            if unbalanced_factorization:
                out_l, out_k = out_k, out_l
            shape = ((out_l, out_k), (in_m, in_n), *k_size)  # ((a, b), (c, d), *k_size)
            self.tucker = use_tucker and any(i != 1 for i in k_size)
            if (
                decompose_both
                and lora_dim < max(shape[0][0], shape[1][0]) / 2
                and not self.full_matrix
            ):
                self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
                self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
            else:
                self.use_w1 = True
                self.lokr_w1 = nn.Parameter(
                    torch.empty(shape[0][0], shape[1][0])
                )  # a*c, 1-mode

            if lora_dim >= max(shape[0][1], shape[1][1]) / 2 or self.full_matrix:
                if not self.full_matrix:
                    logging_force_full_matrix(lora_dim, max(in_dim, out_dim), factor)
                self.use_w2 = True
                self.lokr_w2 = nn.Parameter(
                    torch.empty(shape[0][1], shape[1][1], *k_size)
                )
            elif self.tucker:
                self.lokr_t2 = nn.Parameter(torch.empty(lora_dim, lora_dim, *shape[2:]))
                self.lokr_w2_a = nn.Parameter(
                    torch.empty(lora_dim, shape[0][1])
                )  # b, 1-mode
                self.lokr_w2_b = nn.Parameter(
                    torch.empty(lora_dim, shape[1][1])
                )  # d, 2-mode
            else:  # Conv2d not tucker
                # bigger part. weight and LoRA. [b, dim] x [dim, d*k1*k2]
                self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
                self.lokr_w2_b = nn.Parameter(
                    torch.empty(
                        lora_dim, shape[1][1] * torch.tensor(shape[2:]).prod().item()
                    )
                )
                # w1 βŠ— (w2_a x w2_b) = (a, b)βŠ—((c, dim)x(dim, d*k1*k2)) = (a, b)βŠ—(c, d*k1*k2) = (ac, bd*k1*k2)
        else:  # Linear
            in_dim = org_module.in_features
            out_dim = org_module.out_features
            self.shape = (out_dim, in_dim)

            in_m, in_n = factorization(in_dim, factor)
            out_l, out_k = factorization(out_dim, factor)
            if unbalanced_factorization:
                out_l, out_k = out_k, out_l
            shape = (
                (out_l, out_k),
                (in_m, in_n),
            )  # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
            # smaller part. weight scale
            if (
                decompose_both
                and lora_dim < max(shape[0][0], shape[1][0]) / 2
                and not self.full_matrix
            ):
                self.lokr_w1_a = nn.Parameter(torch.empty(shape[0][0], lora_dim))
                self.lokr_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1][0]))
            else:
                self.use_w1 = True
                self.lokr_w1 = nn.Parameter(
                    torch.empty(shape[0][0], shape[1][0])
                )  # a*c, 1-mode
            if lora_dim < max(shape[0][1], shape[1][1]) / 2 and not self.full_matrix:
                # bigger part. weight and LoRA. [b, dim] x [dim, d]
                self.lokr_w2_a = nn.Parameter(torch.empty(shape[0][1], lora_dim))
                self.lokr_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1][1]))
                # w1 βŠ— (w2_a x w2_b) = (a, b)βŠ—((c, dim)x(dim, d)) = (a, b)βŠ—(c, d) = (ac, bd)
            else:
                if not self.full_matrix:
                    logging_force_full_matrix(lora_dim, max(in_dim, out_dim), factor)
                self.use_w2 = True
                self.lokr_w2 = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))

        self.wd = weight_decompose
        self.wd_on_out = wd_on_out
        if self.wd:
            org_weight = org_module.weight.cpu().clone().float()
            self.dora_norm_dims = org_weight.dim() - 1
            if self.wd_on_out:
                self.dora_scale = nn.Parameter(
                    torch.norm(
                        org_weight.reshape(org_weight.shape[0], -1),
                        dim=1,
                        keepdim=True,
                    ).reshape(org_weight.shape[0], *[1] * self.dora_norm_dims)
                ).float()
            else:
                self.dora_scale = nn.Parameter(
                    torch.norm(
                        org_weight.transpose(1, 0).reshape(org_weight.shape[1], -1),
                        dim=1,
                        keepdim=True,
                    )
                    .reshape(org_weight.shape[1], *[1] * self.dora_norm_dims)
                    .transpose(1, 0)
                ).float()

        self.dropout = dropout
        if dropout:
            print("[WARN]LoHa/LoKr haven't implemented normal dropout yet.")
        self.rank_dropout = rank_dropout
        self.rank_dropout_scale = rank_dropout_scale
        self.module_dropout = module_dropout

        if isinstance(alpha, torch.Tensor):
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = lora_dim if alpha is None or alpha == 0 else alpha
        if self.use_w2 and self.use_w1:
            # use scale = 1
            alpha = lora_dim

        r_factor = lora_dim
        if self.rs_lora:
            r_factor = math.sqrt(r_factor)

        self.scale = alpha / r_factor

        self.register_buffer("alpha", torch.tensor(alpha * (lora_dim / r_factor)))

        if use_scalar:
            self.scalar = nn.Parameter(torch.tensor(0.0))
        else:
            self.register_buffer("scalar", torch.tensor(1.0), persistent=False)

        if self.use_w2:
            if use_scalar:
                torch.nn.init.kaiming_uniform_(self.lokr_w2, a=math.sqrt(5))
            else:
                torch.nn.init.constant_(self.lokr_w2, 0)
        else:
            if self.tucker:
                torch.nn.init.kaiming_uniform_(self.lokr_t2, a=math.sqrt(5))
            torch.nn.init.kaiming_uniform_(self.lokr_w2_a, a=math.sqrt(5))
            if use_scalar:
                torch.nn.init.kaiming_uniform_(self.lokr_w2_b, a=math.sqrt(5))
            else:
                torch.nn.init.constant_(self.lokr_w2_b, 0)

        if self.use_w1:
            torch.nn.init.kaiming_uniform_(self.lokr_w1, a=math.sqrt(5))
        else:
            torch.nn.init.kaiming_uniform_(self.lokr_w1_a, a=math.sqrt(5))
            torch.nn.init.kaiming_uniform_(self.lokr_w1_b, a=math.sqrt(5))

    @classmethod
    def make_module_from_state_dict(
        cls,
        lora_name,
        orig_module,
        w1,
        w1a,
        w1b,
        w2,
        w2a,
        w2b,
        _,
        t2,
        alpha,
        dora_scale,
    ):
        full_matrix = False
        if w1a is not None:
            lora_dim = w1a.size(1)
        elif w2a is not None:
            lora_dim = w2a.size(1)
        else:
            full_matrix = True
            lora_dim = 1

        if w1 is None:
            out_dim = w1a.size(0)
            in_dim = w1b.size(1)
        else:
            out_dim, in_dim = w1.shape

        shape_s = [out_dim, in_dim]

        if w2 is None:
            out_dim *= w2a.size(0)
            in_dim *= w2b.size(1)
        else:
            out_dim *= w2.size(0)
            in_dim *= w2.size(1)

        if (
            shape_s[0] == factorization(out_dim, -1)[0]
            and shape_s[1] == factorization(in_dim, -1)[0]
        ):
            factor = -1
        else:
            w1_shape = w1.shape if w1 is not None else (w1a.size(0), w1b.size(1))
            w2_shape = w2.shape if w2 is not None else (w2a.size(0), w2b.size(1))
            shape_group_1 = (w1_shape[0], w2_shape[0])
            shape_group_2 = (w1_shape[1], w2_shape[1])
            w_shape = (w1_shape[0] * w2_shape[0], w1_shape[1] * w2_shape[1])
            factor1 = max(w1.shape) if w1 is not None else max(w1a.size(0), w1b.size(1))
            factor2 = max(w2.shape) if w2 is not None else max(w2a.size(0), w2b.size(1))
            if (
                w_shape[0] % factor1 == 0
                and w_shape[1] % factor1 == 0
                and factor1 in shape_group_1
                and factor1 in shape_group_2
            ):
                factor = factor1
            elif (
                w_shape[0] % factor2 == 0
                and w_shape[1] % factor2 == 0
                and factor2 in shape_group_1
                and factor2 in shape_group_2
            ):
                factor = factor2
            else:
                factor = min(factor1, factor2)

        module = cls(
            lora_name,
            orig_module,
            1,
            lora_dim,
            float(alpha),
            use_tucker=t2 is not None,
            decompose_both=w1 is None and w2 is None,
            factor=factor,
            weight_decompose=dora_scale is not None,
            full_matrix=full_matrix,
        )
        if w1 is not None:
            module.lokr_w1.copy_(w1)
        else:
            module.lokr_w1_a.copy_(w1a)
            module.lokr_w1_b.copy_(w1b)
        if w2 is not None:
            module.lokr_w2.copy_(w2)
        else:
            module.lokr_w2_a.copy_(w2a)
            module.lokr_w2_b.copy_(w2b)
        if t2 is not None:
            module.lokr_t2.copy_(t2)
        if dora_scale is not None:
            module.dora_scale.copy_(dora_scale)
        return module

    def load_weight_hook(self, module: nn.Module, incompatible_keys):
        missing_keys = incompatible_keys.missing_keys
        for key in missing_keys:
            if "scalar" in key:
                del missing_keys[missing_keys.index(key)]
        if isinstance(self.scalar, nn.Parameter):
            self.scalar.data.copy_(torch.ones_like(self.scalar))
        elif getattr(self, "scalar", None) is not None:
            self.scalar.copy_(torch.ones_like(self.scalar))
        else:
            self.register_buffer(
                "scalar", torch.ones_like(self.scalar), persistent=False
            )

    def get_weight(self, shape):
        weight = make_kron(
            self.lokr_w1 if self.use_w1 else self.lokr_w1_a @ self.lokr_w1_b,
            (
                self.lokr_w2
                if self.use_w2
                else (
                    rebuild_tucker(self.lokr_t2, self.lokr_w2_a, self.lokr_w2_b)
                    if self.tucker
                    else self.lokr_w2_a @ self.lokr_w2_b
                )
            ),
            self.scale,
        )
        dtype = weight.dtype
        if shape is not None:
            weight = weight.view(shape)
        if self.training and self.rank_dropout:
            drop = (torch.rand(weight.size(0)) > self.rank_dropout).to(dtype)
            drop = drop.view(-1, *[1] * len(weight.shape[1:]))
            if self.rank_dropout_scale:
                drop /= drop.mean()
            weight *= drop
        return weight

    def get_diff_weight(self, multiplier=1, shape=None, device=None):
        scale = self.scale * multiplier
        diff = self.get_weight(shape) * scale
        if device is not None:
            diff = diff.to(device)
        return diff, None

    def get_merged_weight(self, multiplier=1, shape=None, device=None):
        diff = self.get_diff_weight(multiplier=1, shape=shape, device=device)[0]
        weight = self.org_weight
        if self.wd:
            merged = self.apply_weight_decompose(weight + diff, multiplier)
        else:
            merged = weight + diff * multiplier
        return merged, None

    def apply_weight_decompose(self, weight, multiplier=1):
        weight = weight.to(self.dora_scale.dtype)
        if self.wd_on_out:
            weight_norm = (
                weight.reshape(weight.shape[0], -1)
                .norm(dim=1)
                .reshape(weight.shape[0], *[1] * self.dora_norm_dims)
            ) + torch.finfo(weight.dtype).eps
        else:
            weight_norm = (
                weight.transpose(0, 1)
                .reshape(weight.shape[1], -1)
                .norm(dim=1, keepdim=True)
                .reshape(weight.shape[1], *[1] * self.dora_norm_dims)
                .transpose(0, 1)
            ) + torch.finfo(weight.dtype).eps

        scale = self.dora_scale.to(weight.device) / weight_norm
        if multiplier != 1:
            scale = multiplier * (scale - 1) + 1

        return weight * scale

    def custom_state_dict(self):
        destination = {}
        destination["alpha"] = self.alpha
        if self.wd:
            destination["dora_scale"] = self.dora_scale
        if self.use_w1:
            destination["lokr_w1"] = self.lokr_w1 * self.scalar
        else:
            destination["lokr_w1_a"] = self.lokr_w1_a * self.scalar
            destination["lokr_w1_b"] = self.lokr_w1_b

        if self.use_w2:
            destination["lokr_w2"] = self.lokr_w2
        else:
            destination["lokr_w2_a"] = self.lokr_w2_a
            destination["lokr_w2_b"] = self.lokr_w2_b
            if self.tucker:
                destination["lokr_t2"] = self.lokr_t2
        return destination

    @torch.no_grad()
    def apply_max_norm(self, max_norm, device=None):
        orig_norm = self.get_weight(self.shape).norm()
        norm = torch.clamp(orig_norm, max_norm / 2)
        desired = torch.clamp(norm, max=max_norm)
        ratio = desired.cpu() / norm.cpu()

        scaled = norm != desired
        if scaled:
            modules = 4 - self.use_w1 - self.use_w2 + (not self.use_w2 and self.tucker)
            if self.use_w1:
                self.lokr_w1 *= ratio ** (1 / modules)
            else:
                self.lokr_w1_a *= ratio ** (1 / modules)
                self.lokr_w1_b *= ratio ** (1 / modules)

            if self.use_w2:
                self.lokr_w2 *= ratio ** (1 / modules)
            else:
                if self.tucker:
                    self.lokr_t2 *= ratio ** (1 / modules)
                self.lokr_w2_a *= ratio ** (1 / modules)
                self.lokr_w2_b *= ratio ** (1 / modules)

        return scaled, orig_norm * ratio

    def bypass_forward_diff(self, h, scale=1):
        is_conv = self.module_type.startswith("conv")
        if self.use_w2:
            ba = self.lokr_w2
        else:
            a = self.lokr_w2_b
            b = self.lokr_w2_a

            if self.tucker:
                t = self.lokr_t2
                a = a.view(*a.shape, *[1] * (len(t.shape) - 2))
                b = b.view(*b.shape, *[1] * (len(t.shape) - 2))
            elif is_conv:
                a = a.view(*a.shape, *self.shape[2:])
                b = b.view(*b.shape, *[1] * (len(self.shape) - 2))

        if self.use_w1:
            c = self.lokr_w1
        else:
            c = self.lokr_w1_a @ self.lokr_w1_b
        uq = c.size(1)

        if is_conv:
            # (b, uq), vq, ...
            b, _, *rest = h.shape
            h_in_group = h.reshape(b * uq, -1, *rest)
        else:
            # b, ..., uq, vq
            h_in_group = h.reshape(*h.shape[:-1], uq, -1)

        if self.use_w2:
            hb = self.op(h_in_group, ba, **self.kw_dict)
        else:
            if is_conv:
                if self.tucker:
                    ha = self.op(h_in_group, a)
                    ht = self.op(ha, t, **self.kw_dict)
                    hb = self.op(ht, b)
                else:
                    ha = self.op(h_in_group, a, **self.kw_dict)
                    hb = self.op(ha, b)
            else:
                ha = self.op(h_in_group, a, **self.kw_dict)
                hb = self.op(ha, b)

        if is_conv:
            # (b, uq), vp, ..., f
            # -> b, uq, vp, ..., f
            # -> b, f, vp, ..., uq
            hb = hb.view(b, -1, *hb.shape[1:])
            h_cross_group = hb.transpose(1, -1)
        else:
            # b, ..., uq, vq
            # -> b, ..., vq, uq
            h_cross_group = hb.transpose(-1, -2)

        hc = F.linear(h_cross_group, c)
        if is_conv:
            # b, f, vp, ..., up
            # -> b, up, vp, ... ,f
            # -> b, c, ..., f
            hc = hc.transpose(1, -1)
            h = hc.reshape(b, -1, *hc.shape[3:])
        else:
            # b, ..., vp, up
            # -> b, ..., up, vp
            # -> b, ..., c
            hc = hc.transpose(-1, -2)
            h = hc.reshape(*hc.shape[:-2], -1)

        return self.drop(h * scale * self.scalar)

    def bypass_forward(self, x, scale=1):
        return self.org_forward(x) + self.bypass_forward_diff(x, scale=scale)

    def forward(self, x: torch.Tensor, *args, **kwargs):
        if self.module_dropout and self.training:
            if torch.rand(1) < self.module_dropout:
                return self.org_forward(x)
        if self.bypass_mode:
            return self.bypass_forward(x, self.multiplier)
        else:
            diff_weight = self.get_weight(self.shape).to(self.dtype) * self.scalar
            weight = self.org_module[0].weight.data.to(self.dtype)
            if self.wd:
                weight = self.apply_weight_decompose(
                    weight + diff_weight, self.multiplier
                )
            elif self.multiplier == 1:
                weight = weight + diff_weight
            else:
                weight = weight + diff_weight * self.multiplier
            bias = (
                None
                if self.org_module[0].bias is None
                else self.org_module[0].bias.data
            )
            return self.op(x, weight, bias, **self.kw_dict)


if __name__ == "__main__":
    base = nn.Conv2d(128, 128, 3, 1, 1)
    net = LokrModule(
        "",
        base,
        multiplier=1,
        lora_dim=4,
        alpha=1,
        weight_decompose=False,
        use_tucker=False,
        use_scalar=False,
        decompose_both=True,
    )
    net.apply_to()
    sd = net.state_dict()
    for key in sd:
        if key != "alpha":
            sd[key] = torch.randn_like(sd[key])
    net.load_state_dict(sd)

    test_input = torch.randn(1, 128, 16, 16)
    test_output = net(test_input)
    print(test_output.shape)

    net2 = LokrModule(
        "",
        base,
        multiplier=1,
        lora_dim=4,
        alpha=1,
        weight_decompose=False,
        use_tucker=False,
        use_scalar=False,
        bypass_mode=True,
        decompose_both=True,
    )
    net2.apply_to()
    net2.load_state_dict(sd)
    print(net2)

    test_output2 = net(test_input)
    print(F.mse_loss(test_output, test_output2))