File size: 15,625 Bytes
cc69848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import re
import hashlib
from io import BytesIO
from typing import Dict, Tuple, Union

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.linalg as linalg

import safetensors.torch

from tqdm import tqdm
from .general import *


def load_bytes_in_safetensors(tensors):
    bytes = safetensors.torch.save(tensors)
    b = BytesIO(bytes)

    b.seek(0)
    header = b.read(8)
    n = int.from_bytes(header, "little")

    offset = n + 8
    b.seek(offset)

    return b.read()


def precalculate_safetensors_hashes(state_dict):
    # calculate each tensor one by one to reduce memory usage
    hash_sha256 = hashlib.sha256()
    for tensor in state_dict.values():
        single_tensor_sd = {"tensor": tensor}
        bytes_for_tensor = load_bytes_in_safetensors(single_tensor_sd)
        hash_sha256.update(bytes_for_tensor)

    return f"0x{hash_sha256.hexdigest()}"


def str_bool(val):
    return str(val).lower() != "false"


def default(val, d):
    return val if val is not None else d


def make_sparse(t: torch.Tensor, sparsity=0.95):
    abs_t = torch.abs(t)
    np_array = abs_t.detach().cpu().numpy()
    quan = float(np.quantile(np_array, sparsity))
    sparse_t = t.masked_fill(abs_t < quan, 0)
    return sparse_t


def extract_conv(
    weight: Union[torch.Tensor, nn.Parameter],
    mode="fixed",
    mode_param=0,
    device="cpu",
    is_cp=False,
) -> Tuple[nn.Parameter, nn.Parameter]:
    weight = weight.to(device)
    out_ch, in_ch, kernel_size, _ = weight.shape

    U, S, Vh = linalg.svd(weight.reshape(out_ch, -1))

    if mode == "full":
        return weight, "full"
    elif mode == "fixed":
        lora_rank = mode_param
    elif mode == "threshold":
        assert mode_param >= 0
        lora_rank = torch.sum(S > mode_param)
    elif mode == "ratio":
        assert 1 >= mode_param >= 0
        min_s = torch.max(S) * mode_param
        lora_rank = torch.sum(S > min_s)
    elif mode == "quantile" or mode == "percentile":
        assert 1 >= mode_param >= 0
        s_cum = torch.cumsum(S, dim=0)
        min_cum_sum = mode_param * torch.sum(S)
        lora_rank = torch.sum(s_cum < min_cum_sum)
    else:
        raise NotImplementedError(
            'Extract mode should be "fixed", "threshold", "ratio" or "quantile"'
        )
    lora_rank = max(1, lora_rank)
    lora_rank = min(out_ch, in_ch, lora_rank)
    if lora_rank >= out_ch / 2 and not is_cp:
        return weight, "full"

    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S).to(device)
    Vh = Vh[:lora_rank, :]

    diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach()
    extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach()
    extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach()
    del U, S, Vh, weight
    return (extract_weight_A, extract_weight_B, diff), "low rank"


def extract_linear(
    weight: Union[torch.Tensor, nn.Parameter],
    mode="fixed",
    mode_param=0,
    device="cpu",
) -> Tuple[nn.Parameter, nn.Parameter]:
    weight = weight.to(device)
    out_ch, in_ch = weight.shape

    U, S, Vh = linalg.svd(weight)

    if mode == "full":
        return weight, "full"
    elif mode == "fixed":
        lora_rank = mode_param
    elif mode == "threshold":
        assert mode_param >= 0
        lora_rank = torch.sum(S > mode_param)
    elif mode == "ratio":
        assert 1 >= mode_param >= 0
        min_s = torch.max(S) * mode_param
        lora_rank = torch.sum(S > min_s)
    elif mode == "quantile" or mode == "percentile":
        assert 1 >= mode_param >= 0
        s_cum = torch.cumsum(S, dim=0)
        min_cum_sum = mode_param * torch.sum(S)
        lora_rank = torch.sum(s_cum < min_cum_sum)
    else:
        raise NotImplementedError(
            'Extract mode should be "fixed", "threshold", "ratio" or "quantile"'
        )
    lora_rank = max(1, lora_rank)
    lora_rank = min(out_ch, in_ch, lora_rank)
    if lora_rank >= out_ch / 2:
        return weight, "full"

    U = U[:, :lora_rank]
    S = S[:lora_rank]
    U = U @ torch.diag(S).to(device)
    Vh = Vh[:lora_rank, :]

    diff = (weight - U @ Vh).detach()
    extract_weight_A = Vh.reshape(lora_rank, in_ch).detach()
    extract_weight_B = U.reshape(out_ch, lora_rank).detach()
    del U, S, Vh, weight
    return (extract_weight_A, extract_weight_B, diff), "low rank"


@torch.no_grad()
def extract_diff(
    base_tes,
    db_tes,
    base_unet,
    db_unet,
    mode="fixed",
    linear_mode_param=0,
    conv_mode_param=0,
    extract_device="cpu",
    use_bias=False,
    sparsity=0.98,
    small_conv=True,
):
    UNET_TARGET_REPLACE_MODULE = [
        "Linear",
        "Conv2d",
        "LayerNorm",
        "GroupNorm",
        "GroupNorm32",
    ]
    TEXT_ENCODER_TARGET_REPLACE_MODULE = [
        "Embedding",
        "Linear",
        "Conv2d",
        "LayerNorm",
        "GroupNorm",
        "GroupNorm32",
    ]
    LORA_PREFIX_UNET = "lora_unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"

    def make_state_dict(
        prefix,
        root_module: torch.nn.Module,
        target_module: torch.nn.Module,
        target_replace_modules,
    ):
        loras = {}
        temp = {}

        for name, module in root_module.named_modules():
            if module.__class__.__name__ in target_replace_modules:
                temp[name] = module

        for name, module in tqdm(
            list((n, m) for n, m in target_module.named_modules() if n in temp)
        ):
            weights = temp[name]
            lora_name = prefix + "." + name
            lora_name = lora_name.replace(".", "_")
            layer = module.__class__.__name__

            if layer in {
                "Linear",
                "Conv2d",
                "LayerNorm",
                "GroupNorm",
                "GroupNorm32",
                "Embedding",
            }:
                root_weight = module.weight
                if torch.allclose(root_weight, weights.weight):
                    continue
            else:
                continue
            module = module.to(extract_device)
            weights = weights.to(extract_device)

            if mode == "full":
                decompose_mode = "full"
            elif layer == "Linear":
                weight, decompose_mode = extract_linear(
                    (root_weight - weights.weight),
                    mode,
                    linear_mode_param,
                    device=extract_device,
                )
                if decompose_mode == "low rank":
                    extract_a, extract_b, diff = weight
            elif layer == "Conv2d":
                is_linear = root_weight.shape[2] == 1 and root_weight.shape[3] == 1
                weight, decompose_mode = extract_conv(
                    (root_weight - weights.weight),
                    mode,
                    linear_mode_param if is_linear else conv_mode_param,
                    device=extract_device,
                )
                if decompose_mode == "low rank":
                    extract_a, extract_b, diff = weight
                if small_conv and not is_linear and decompose_mode == "low rank":
                    dim = extract_a.size(0)
                    (extract_c, extract_a, _), _ = extract_conv(
                        extract_a.transpose(0, 1),
                        "fixed",
                        dim,
                        extract_device,
                        True,
                    )
                    extract_a = extract_a.transpose(0, 1)
                    extract_c = extract_c.transpose(0, 1)
                    loras[f"{lora_name}.lora_mid.weight"] = (
                        extract_c.detach().cpu().contiguous().half()
                    )
                    diff = (
                        (
                            root_weight
                            - torch.einsum(
                                "i j k l, j r, p i -> p r k l",
                                extract_c,
                                extract_a.flatten(1, -1),
                                extract_b.flatten(1, -1),
                            )
                        )
                        .detach()
                        .cpu()
                        .contiguous()
                    )
                    del extract_c
            else:
                module = module.to("cpu")
                weights = weights.to("cpu")
                continue

            if decompose_mode == "low rank":
                loras[f"{lora_name}.lora_down.weight"] = (
                    extract_a.detach().cpu().contiguous().half()
                )
                loras[f"{lora_name}.lora_up.weight"] = (
                    extract_b.detach().cpu().contiguous().half()
                )
                loras[f"{lora_name}.alpha"] = torch.Tensor([extract_a.shape[0]]).half()
                if use_bias:
                    diff = diff.detach().cpu().reshape(extract_b.size(0), -1)
                    sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce()

                    indices = sparse_diff.indices().to(torch.int16)
                    values = sparse_diff.values().half()
                    loras[f"{lora_name}.bias_indices"] = indices
                    loras[f"{lora_name}.bias_values"] = values
                    loras[f"{lora_name}.bias_size"] = torch.tensor(diff.shape).to(
                        torch.int16
                    )
                del extract_a, extract_b, diff
            elif decompose_mode == "full":
                if "Norm" in layer:
                    w_key = "w_norm"
                    b_key = "b_norm"
                else:
                    w_key = "diff"
                    b_key = "diff_b"
                weight_diff = module.weight - weights.weight
                loras[f"{lora_name}.{w_key}"] = (
                    weight_diff.detach().cpu().contiguous().half()
                )
                if getattr(weights, "bias", None) is not None:
                    bias_diff = module.bias - weights.bias
                    loras[f"{lora_name}.{b_key}"] = (
                        bias_diff.detach().cpu().contiguous().half()
                    )
            else:
                raise NotImplementedError
            module = module.to("cpu")
            weights = weights.to("cpu")
        return loras

    all_loras = {}

    all_loras |= make_state_dict(
        LORA_PREFIX_UNET,
        base_unet,
        db_unet,
        UNET_TARGET_REPLACE_MODULE,
    )
    del base_unet, db_unet
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

    for idx, (te1, te2) in enumerate(zip(base_tes, db_tes)):
        if len(base_tes) > 1:
            prefix = f"{LORA_PREFIX_TEXT_ENCODER}{idx+1}"
        else:
            prefix = LORA_PREFIX_TEXT_ENCODER
        all_loras |= make_state_dict(
            prefix,
            te1,
            te2,
            TEXT_ENCODER_TARGET_REPLACE_MODULE,
        )
        del te1, te2

    all_lora_name = set()
    for k in all_loras:
        lora_name, weight = k.rsplit(".", 1)
        all_lora_name.add(lora_name)
    print(len(all_lora_name))
    return all_loras


re_digits = re.compile(r"\d+")
re_compiled = {}

suffix_conversion = {
    "attentions": {},
    "resnets": {
        "conv1": "in_layers_2",
        "conv2": "out_layers_3",
        "norm1": "in_layers_0",
        "norm2": "out_layers_0",
        "time_emb_proj": "emb_layers_1",
        "conv_shortcut": "skip_connection",
    },
}


def convert_diffusers_name_to_compvis(key):
    def match(match_list, regex_text):
        regex = re_compiled.get(regex_text)
        if regex is None:
            regex = re.compile(regex_text)
            re_compiled[regex_text] = regex

        r = re.match(regex, key)
        if not r:
            return False

        match_list.clear()
        match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
        return True

    m = []

    if match(m, r"lora_unet_conv_in(.*)"):
        return f"lora_unet_input_blocks_0_0{m[0]}"

    if match(m, r"lora_unet_conv_out(.*)"):
        return f"lora_unet_out_2{m[0]}"

    if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
        return f"lora_unet_time_embed_{m[0] * 2 - 2}{m[1]}"

    if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
        return f"lora_unet_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"

    if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
        return (
            f"lora_unet_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
        )

    if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
        return f"lora_unet_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"

    if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
        return f"lora_unet_input_blocks_{3 + m[0] * 3}_0_op"

    if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
        return f"lora_unet_output_blocks_{2 + m[0] * 3}_2_conv"
    return key


@torch.no_grad()
def merge(tes, unet, lyco_state_dict, scale: float = 1.0, device="cpu"):
    from ..modules import make_module, get_module

    LORA_PREFIX_UNET = "lora_unet"
    LORA_PREFIX_TEXT_ENCODER = "lora_te"
    merged = 0

    def merge_state_dict(
        prefix,
        root_module: torch.nn.Module,
        lyco_state_dict: Dict[str, torch.Tensor],
    ):
        nonlocal merged
        for child_name, child_module in tqdm(
            list(root_module.named_modules()), desc=f"Merging {prefix}"
        ):
            lora_name = prefix + "." + child_name
            lora_name = lora_name.replace(".", "_")

            lyco_type, params = get_module(lyco_state_dict, lora_name)
            if lyco_type is None:
                continue
            module = make_module(lyco_type, params, lora_name, child_module)
            if module is None:
                continue
            module.to(device)
            module.merge_to(scale)
            key_dict.pop(convert_diffusers_name_to_compvis(lora_name), None)
            key_dict.pop(lora_name, None)
            merged += 1

    key_dict = {}
    for k, v in tqdm(list(lyco_state_dict.items()), desc="Converting Dtype and Device"):
        module, weight_key = k.split(".", 1)
        convert_key = convert_diffusers_name_to_compvis(module)
        if convert_key != module and len(tes) > 1:
            # kohya's format for sdxl is as same as SGM, not diffusers
            del lyco_state_dict[k]
            key_dict[convert_key] = key_dict.get(convert_key, []) + [k]
            k = f"{convert_key}.{weight_key}"
        else:
            key_dict[module] = key_dict.get(module, []) + [k]
        lyco_state_dict[k] = v.float().cpu()

    for idx, te in enumerate(tes):
        if len(tes) > 1:
            prefix = LORA_PREFIX_TEXT_ENCODER + str(idx + 1)
        else:
            prefix = LORA_PREFIX_TEXT_ENCODER
        merge_state_dict(
            prefix,
            te,
            lyco_state_dict,
        )
        torch.cuda.empty_cache()
    merge_state_dict(
        LORA_PREFIX_UNET,
        unet,
        lyco_state_dict,
    )
    torch.cuda.empty_cache()
    print(f"Unused state dict key: {key_dict}")
    print(f"{merged} Modules been merged")