File size: 86,990 Bytes
cc69848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 |
import os
import torch
from torchvision import transforms
import folder_paths
import comfy.model_management as mm
import comfy.utils
import toml
import json
import time
import shutil
import shlex
from pathlib import Path
script_directory = os.path.dirname(os.path.abspath(__file__))
from .flux_train_network_comfy import FluxNetworkTrainer
from .library import flux_train_utils as flux_train_utils
from .flux_train_comfy import FluxTrainer
from .flux_train_comfy import setup_parser as train_setup_parser
from .library.device_utils import init_ipex
init_ipex()
from .library import train_util
from .train_network import setup_parser as train_network_setup_parser
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import io
from PIL import Image
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class FluxTrainModelSelect:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"transformer": (folder_paths.get_filename_list("unet"), ),
"vae": (folder_paths.get_filename_list("vae"), ),
"clip_l": (folder_paths.get_filename_list("clip"), ),
"t5": (folder_paths.get_filename_list("clip"), ),
},
"optional": {
"lora_path": ("STRING",{"multiline": True, "forceInput": True, "default": "", "tooltip": "pre-trained LoRA path to load (network_weights)"}),
}
}
RETURN_TYPES = ("TRAIN_FLUX_MODELS",)
RETURN_NAMES = ("flux_models",)
FUNCTION = "loadmodel"
CATEGORY = "FluxTrainer"
def loadmodel(self, transformer, vae, clip_l, t5, lora_path=""):
transformer_path = folder_paths.get_full_path("unet", transformer)
vae_path = folder_paths.get_full_path("vae", vae)
clip_path = folder_paths.get_full_path("clip", clip_l)
t5_path = folder_paths.get_full_path("clip", t5)
flux_models = {
"transformer": transformer_path,
"vae": vae_path,
"clip_l": clip_path,
"t5": t5_path,
"lora_path": lora_path
}
return (flux_models,)
class TrainDatasetGeneralConfig:
queue_counter = 0
@classmethod
def IS_CHANGED(s, reset_on_queue=False, **kwargs):
if reset_on_queue:
s.queue_counter += 1
print(f"queue_counter: {s.queue_counter}")
return s.queue_counter
@classmethod
def INPUT_TYPES(s):
return {"required": {
"color_aug": ("BOOLEAN",{"default": False, "tooltip": "enable weak color augmentation"}),
"flip_aug": ("BOOLEAN",{"default": False, "tooltip": "enable horizontal flip augmentation"}),
"shuffle_caption": ("BOOLEAN",{"default": False, "tooltip": "shuffle caption"}),
"caption_dropout_rate": ("FLOAT",{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "tag dropout rate"}),
"alpha_mask": ("BOOLEAN",{"default": False, "tooltip": "use alpha channel as mask for training"}),
},
"optional": {
"reset_on_queue": ("BOOLEAN",{"default": False, "tooltip": "Force refresh of everything for cleaner queueing"}),
"caption_extension": ("STRING",{"default": ".txt", "tooltip": "extension for caption files"}),
}
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("dataset_general",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, shuffle_caption, caption_dropout_rate, color_aug, flip_aug, alpha_mask, reset_on_queue=False, caption_extension=".txt"):
dataset = {
"general": {
"shuffle_caption": shuffle_caption,
"caption_extension": caption_extension,
"keep_tokens_separator": "|||",
"caption_dropout_rate": caption_dropout_rate,
"color_aug": color_aug,
"flip_aug": flip_aug,
},
"datasets": []
}
dataset_json = json.dumps(dataset, indent=2)
#print(dataset_json)
dataset_config = {
"datasets": dataset_json,
"alpha_mask": alpha_mask
}
return (dataset_config,)
class TrainDatasetRegularization:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"dataset_path": ("STRING",{"multiline": True, "default": "", "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"class_tokens": ("STRING",{"multiline": True, "default": "", "tooltip": "aka trigger word, if specified, will be added to the start of each caption, if no captions exist, will be used on it's own"}),
"num_repeats": ("INT", {"default": 1, "min": 1, "tooltip": "number of times to repeat dataset for an epoch"}),
},
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("subset",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, dataset_path, class_tokens, num_repeats):
reg_subset = {
"image_dir": dataset_path,
"class_tokens": class_tokens,
"num_repeats": num_repeats,
"is_reg": True
}
return reg_subset,
class TrainDatasetAdd:
def __init__(self):
self.previous_dataset_signature = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"dataset_config": ("JSON",),
"width": ("INT",{"min": 64, "default": 1024, "tooltip": "base resolution width"}),
"height": ("INT",{"min": 64, "default": 1024, "tooltip": "base resolution height"}),
"batch_size": ("INT",{"min": 1, "default": 2, "tooltip": "Higher batch size uses more memory and generalizes the training more"}),
"dataset_path": ("STRING",{"multiline": True, "default": "", "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"class_tokens": ("STRING",{"multiline": True, "default": "", "tooltip": "aka trigger word, if specified, will be added to the start of each caption, if no captions exist, will be used on it's own"}),
"enable_bucket": ("BOOLEAN",{"default": True, "tooltip": "enable buckets for multi aspect ratio training"}),
"bucket_no_upscale": ("BOOLEAN",{"default": False, "tooltip": "don't allow upscaling when bucketing"}),
"num_repeats": ("INT", {"default": 1, "min": 1, "tooltip": "number of times to repeat dataset for an epoch"}),
"min_bucket_reso": ("INT", {"default": 256, "min": 64, "max": 4096, "step": 8, "tooltip": "min bucket resolution"}),
"max_bucket_reso": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "max bucket resolution"}),
},
"optional": {
"regularization": ("JSON", {"tooltip": "reg data dir"}),
}
}
RETURN_TYPES = ("JSON",)
RETURN_NAMES = ("dataset",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, dataset_config, dataset_path, class_tokens, width, height, batch_size, num_repeats, enable_bucket,
bucket_no_upscale, min_bucket_reso, max_bucket_reso, regularization=None):
new_dataset = {
"resolution": (width, height),
"batch_size": batch_size,
"enable_bucket": enable_bucket,
"bucket_no_upscale": bucket_no_upscale,
"min_bucket_reso": min_bucket_reso,
"max_bucket_reso": max_bucket_reso,
"subsets": [
{
"image_dir": dataset_path,
"class_tokens": class_tokens,
"num_repeats": num_repeats
}
]
}
if regularization is not None:
new_dataset["subsets"].append(regularization)
# Generate a signature for the new dataset
new_dataset_signature = self.generate_signature(new_dataset)
# Load the existing datasets
existing_datasets = json.loads(dataset_config["datasets"])
# Remove the previously added dataset if it exists
if self.previous_dataset_signature:
existing_datasets["datasets"] = [
ds for ds in existing_datasets["datasets"]
if self.generate_signature(ds) != self.previous_dataset_signature
]
# Add the new dataset
existing_datasets["datasets"].append(new_dataset)
# Store the new dataset signature for future runs
self.previous_dataset_signature = new_dataset_signature
# Convert back to JSON and update dataset_config
updated_dataset_json = json.dumps(existing_datasets, indent=2)
dataset_config["datasets"] = updated_dataset_json
return dataset_config,
def generate_signature(self, dataset):
# Create a unique signature for the dataset based on its attributes
return json.dumps(dataset, sort_keys=True)
class OptimizerConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"optimizer_type": (["adamw8bit", "adamw","prodigy", "CAME", "Lion8bit", "Lion", "adamwschedulefree", "sgdschedulefree", "AdEMAMix8bit", "PagedAdEMAMix8bit", "ProdigyPlusScheduleFree"], {"default": "adamw8bit", "tooltip": "optimizer type"}),
"max_grad_norm": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup"], {"default": "constant", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, min_snr_gamma, extra_optimizer_args, **kwargs):
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
kwargs["optimizer_args"] = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
return (kwargs,)
class OptimizerConfigAdafactor:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup", "adafactor"], {"default": "constant_with_warmup", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"relative_step": ("BOOLEAN",{"default": False, "tooltip": "relative step"}),
"scale_parameter": ("BOOLEAN",{"default": False, "tooltip": "scale parameter"}),
"warmup_init": ("BOOLEAN",{"default": False, "tooltip": "warmup init"}),
"clip_threshold": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "clip threshold"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, relative_step, scale_parameter, warmup_init, clip_threshold, min_snr_gamma, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "adafactor"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"relative_step={relative_step}",
f"scale_parameter={scale_parameter}",
f"warmup_init={warmup_init}",
f"clip_threshold={clip_threshold}"
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class FluxTrainerLossConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"loss_type": (["l2", "huber","smooth_l1"], {"default": "huber", "tooltip": "The type of loss function to use"}),
"huber_schedule": (["snr", "exponential", "constant"], {"default": "exponential", "tooltip": "The scheduling method for Huber loss (constant, exponential, or SNR-based). Only used when loss_type is 'huber' or 'smooth_l1'. default is snr"}),
"huber_c": ("FLOAT",{"default": 0.25, "min": 0.0, "step": 0.01, "tooltip": "The Huber loss decay parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type. default is 0.1"}),
"huber_scale": ("FLOAT",{"default": 1.75, "min": 0.0, "step": 0.01, "tooltip": "The Huber loss scale parameter. Only used if one of the huber loss modes (huber or smooth l1) is selected with loss_type. default is 1.0"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("loss_args",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, **kwargs):
return (kwargs,)
class OptimizerConfigProdigy:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"lr_scheduler": (["constant", "cosine", "cosine_with_restarts", "polynomial", "constant_with_warmup", "adafactor"], {"default": "constant", "tooltip": "learning rate scheduler"}),
"lr_warmup_steps": ("INT",{"default": 0, "min": 0, "tooltip": "learning rate warmup steps"}),
"lr_scheduler_num_cycles": ("INT",{"default": 1, "min": 1, "tooltip": "learning rate scheduler num cycles"}),
"lr_scheduler_power": ("FLOAT",{"default": 1.0, "min": 0.0, "tooltip": "learning rate scheduler power"}),
"weight_decay": ("FLOAT",{"default": 0.0, "step": 0.0001, "tooltip": "weight decay (L2 penalty)"}),
"decouple": ("BOOLEAN",{"default": True, "tooltip": "use AdamW style weight decay"}),
"use_bias_correction": ("BOOLEAN",{"default": False, "tooltip": "turn on Adam's bias correction"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, weight_decay, decouple, min_snr_gamma, use_bias_correction, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "prodigy"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"weight_decay={weight_decay}",
f"decouple={decouple}",
f"use_bias_correction={use_bias_correction}"
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class TrainNetworkConfig:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_type": (["lora", "LyCORIS/LoKr", "LyCORIS/Locon", "LyCORIS/LoHa"], {"default": "lora", "tooltip": "network type"}),
"lycoris_preset": (["full", "full-lin", "attn-mlp", "attn-only"], {"default": "attn-mlp"}),
"factor": ("INT",{"default": -1, "min": -1, "max": 16, "step": 1, "tooltip": "LoKr factor"}),
"extra_network_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional network args"}),
},
}
RETURN_TYPES = ("NETWORK_CONFIG",)
RETURN_NAMES = ("network_config",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, network_type, extra_network_args, lycoris_preset, factor):
extra_args = [arg.strip() for arg in extra_network_args.strip().split('|') if arg.strip()]
if network_type == "lora":
network_module = ".networks.lora"
elif network_type == "LyCORIS/LoKr":
network_module = ".lycoris.kohya"
algo = "lokr"
elif network_type == "LyCORIS/Locon":
network_module = ".lycoris.kohya"
algo = "locon"
elif network_type == "LyCORIS/LoHa":
network_module = ".lycoris.kohya"
algo = "loha"
network_args = [
f"algo={algo}",
f"factor={factor}",
f"preset={lycoris_preset}"
]
network_config = {
"network_module": network_module,
"network_args": network_args + extra_args
}
return (network_config,)
class OptimizerConfigProdigyPlusScheduleFree:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"lr": ("FLOAT",{"default": 1.0, "min": 0.0, "step": 1e-7, "tooltip": "Learning rate adjustment parameter. Increases or decreases the Prodigy learning rate."}),
"max_grad_norm": ("FLOAT",{"default": 0.0, "min": 0.0, "tooltip": "gradient clipping"}),
"prodigy_steps": ("INT",{"default": 0, "min": 0, "tooltip": "Freeze Prodigy stepsize adjustments after a certain optimiser step."}),
"d0": ("FLOAT",{"default": 1e-6, "min": 0.0,"step": 1e-7, "tooltip": "initial learning rate"}),
"d_coeff": ("FLOAT",{"default": 1.0, "min": 0.0, "step": 1e-7, "tooltip": "Coefficient in the expression for the estimate of d (default 1.0). Values such as 0.5 and 2.0 typically work as well. Changing this parameter is the preferred way to tune the method."}),
"split_groups": ("BOOLEAN",{"default": True, "tooltip": "Track individual adaptation values for each parameter group."}),
#"beta3": ("FLOAT",{"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.0001, "tooltip": " Coefficient for computing the Prodigy stepsize using running averages. If set to None, uses the value of square root of beta2 (default: None)."}),
#"beta4": ("FLOAT",{"default": 0, "min": 0.0, "max": 1.0, "step": 0.0001, "tooltip": "Coefficient for updating the learning rate from Prodigy's adaptive stepsize. Smooths out spikes in learning rate adjustments. If set to None, beta1 is used instead. (default 0, which disables smoothing and uses original Prodigy behaviour)."}),
"use_bias_correction": ("BOOLEAN",{"default": False, "tooltip": "Use the RAdam variant of schedule-free"}),
"min_snr_gamma": ("FLOAT",{"default": 5.0, "min": 0.0, "step": 0.01, "tooltip": "gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by the paper"}),
"use_stableadamw": ("BOOLEAN",{"default": True, "tooltip": "Scales parameter updates by the root-mean-square of the normalised gradient, in essence identical to Adafactor's gradient scaling. Set to False if the adaptive learning rate never improves."}),
"use_cautious" : ("BOOLEAN",{"default": False, "tooltip": "Experimental. Perform 'cautious' updates, as proposed in https://arxiv.org/pdf/2411.16085. Modifies the update to isolate and boost values that align with the current gradient."}),
"use_adopt": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Performs a modified step where the second moment is updated after the parameter update, so as not to include the current gradient in the denominator. This is a partial implementation of ADOPT (https://arxiv.org/abs/2411.02853), as we don't have a first moment to use for the update."}),
"use_grams": ("BOOLEAN",{"default": False, "tooltip": "Perform 'grams' updates, as proposed in https://arxiv.org/abs/2412.17107. Modifies the update using sign operations that align with the current gradient. Note that we do not have access to a first moment, so this deviates from the paper (we apply the sign directly to the update). May have a limited effect."}),
"stochastic_rounding": ("BOOLEAN",{"default": True, "tooltip": "Use stochastic rounding for bfloat16 weights"}),
"use_orthograd": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Updates weights using the component of the gradient that is orthogonal to the current weight direction, as described in (https://arxiv.org/pdf/2501.04697). Can help prevent overfitting and improve generalisation."}),
"use_focus ": ("BOOLEAN",{"default": False, "tooltip": "Experimental. Modifies the update step to better handle noise at large step sizes. (https://arxiv.org/abs/2501.12243). This method is incompatible with factorisation, Muon and Adam-atan2."}),
"extra_optimizer_args": ("STRING",{"multiline": True, "default": "", "tooltip": "additional optimizer args"}),
},
}
RETURN_TYPES = ("ARGS",)
RETURN_NAMES = ("optimizer_settings",)
FUNCTION = "create_config"
CATEGORY = "FluxTrainer"
def create_config(self, min_snr_gamma, use_bias_correction, extra_optimizer_args, **kwargs):
kwargs["optimizer_type"] = "ProdigyPlusScheduleFree"
kwargs["lr_scheduler"] = "constant"
extra_args = [arg.strip() for arg in extra_optimizer_args.strip().split('|') if arg.strip()]
node_args = [
f"use_bias_correction={use_bias_correction}",
]
kwargs["optimizer_args"] = node_args + extra_args
kwargs["min_snr_gamma"] = min_snr_gamma if min_snr_gamma != 0.0 else None
return (kwargs,)
class InitFluxLoRATraining:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset": ("JSON",),
"optimizer_settings": ("ARGS",),
"output_name": ("STRING", {"default": "flux_lora", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"network_dim": ("INT", {"default": 4, "min": 1, "max": 100000, "step": 1, "tooltip": "network dim"}),
"network_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2048.0, "step": 0.01, "tooltip": "network alpha"}),
"learning_rate": ("FLOAT", {"default": 4e-4, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}),
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "apply t5 attention mask"}),
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"blocks_to_swap": ("INT", {"default": 0, "tooltip": "Previously known as split_mode, number of blocks to swap to save memory, default to enable is 18"}),
"weighting_scheme": (["logit_normal", "sigma_sqrt", "mode", "cosmap", "none"],),
"logit_mean": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "mean to use when using the logit_normal weighting scheme"}),
"logit_std": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "std to use when using the logit_normal weighting scheme"}),
"mode_scale": ("FLOAT", {"default": 1.29, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "Scale of mode weighting scheme. Only effective when using the mode as the weighting_scheme"}),
"timestep_sampling": (["sigmoid", "uniform", "sigma", "shift", "flux_shift"], {"tooltip": "Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid (recommend value of 3.1582 for discrete_flow_shift)"}),
"sigmoid_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1, "tooltip": "Scale factor for sigmoid timestep sampling (only used when timestep-sampling is sigmoid"}),
"model_prediction_type": (["raw", "additive", "sigma_scaled"], {"tooltip": "How to interpret and process the model prediction: raw (use as is), additive (add to noisy input), sigma_scaled (apply sigma scaling)."}),
"guidance_scale": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 32.0, "step": 0.01, "tooltip": "guidance scale, for Flux training should be 1.0"}),
"discrete_flow_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "for the Euler Discrete Scheduler, default is 3.0"}),
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}),
"fp8_base": ("BOOLEAN", {"default": True, "tooltip": "use fp8 for base model"}),
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "fp32", "tooltip": "the actual dtype training uses"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}),
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
"optional": {
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}),
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}),
"train_text_encoder": (['disabled', 'clip_l', 'clip_l_fp8', 'clip_l+T5', 'clip_l+T5_fp8'], {"default": 'disabled', "tooltip": "also train the selected text encoders using specified dtype, T5 can not be trained without clip_l"}),
"clip_l_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"T5_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}),
"block_args": ("ARGS", {"default": "", "tooltip": "limit the blocks used in the LoRA"}),
"gradient_checkpointing": (["enabled", "enabled_with_cpu_offloading", "disabled"], {"default": "enabled", "tooltip": "use gradient checkpointing"}),
"loss_args": ("ARGS", {"default": "", "tooltip": "loss args"}),
"network_config": ("NETWORK_CONFIG", {"tooltip": "additional network config"}),
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS",)
RETURN_NAMES = ("network_trainer", "epochs_count", "args",)
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, dataset, optimizer_settings, sample_prompts, output_name, attention_mode,
gradient_dtype, save_dtype, additional_args=None, resume_args=None, train_text_encoder='disabled',
block_args=None, gradient_checkpointing="enabled", prompt=None, extra_pnginfo=None, clip_l_lr=0, T5_lr=0, loss_args=None, network_config=None, **kwargs):
mm.soft_empty_cache()
output_dir = os.path.abspath(kwargs.get("output_dir"))
os.makedirs(output_dir, exist_ok=True)
total, used, free = shutil.disk_usage(output_dir)
required_free_space = 2 * (2**30)
if free <= required_free_space:
raise ValueError(f"Insufficient disk space. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB")
dataset_config = dataset["datasets"]
dataset_toml = toml.dumps(json.loads(dataset_config))
parser = train_network_setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
if additional_args is not None:
print(f"additional_args: {additional_args}")
args, _ = parser.parse_known_args(args=shlex.split(additional_args))
else:
args, _ = parser.parse_known_args()
if kwargs.get("cache_latents") == "memory":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = False
elif kwargs.get("cache_latents") == "disk":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = True
kwargs["caption_dropout_rate"] = 0.0
kwargs["shuffle_caption"] = False
kwargs["token_warmup_step"] = 0.0
kwargs["caption_tag_dropout_rate"] = 0.0
else:
kwargs["cache_latents"] = False
kwargs["cache_latents_to_disk"] = False
if kwargs.get("cache_text_encoder_outputs") == "memory":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = False
elif kwargs.get("cache_text_encoder_outputs") == "disk":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = True
else:
kwargs["cache_text_encoder_outputs"] = False
kwargs["cache_text_encoder_outputs_to_disk"] = False
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
config_dict = {
"sample_prompts": prompts,
"save_precision": save_dtype,
"mixed_precision": "bf16",
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"network_module": ".networks.lora_flux" if network_config is None else network_config["network_module"],
"dataset_config": dataset_toml,
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{save_dtype}",
"loss_type": "l2",
"t5xxl_max_token_length": 512,
"alpha_mask": dataset["alpha_mask"],
"network_train_unet_only": True if train_text_encoder == 'disabled' else False,
"fp8_base_unet": True if "fp8" in train_text_encoder else False,
"disable_mmap_load_safetensors": False,
"network_args": None if network_config is None else network_config["network_args"],
}
attention_settings = {
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True},
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False}
}
config_dict.update(attention_settings.get(attention_mode, {}))
gradient_dtype_settings = {
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"},
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"}
}
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {}))
if train_text_encoder != 'disabled':
if T5_lr != "NaN":
config_dict["text_encoder_lr"] = clip_l_lr
if T5_lr != "NaN":
config_dict["text_encoder_lr"] = [clip_l_lr, T5_lr]
if gradient_checkpointing == "disabled":
config_dict["gradient_checkpointing"] = False
elif gradient_checkpointing == "enabled_with_cpu_offloading":
config_dict["gradient_checkpointing"] = True
config_dict["cpu_offload_checkpointing"] = True
else:
config_dict["gradient_checkpointing"] = True
if flux_models["lora_path"]:
config_dict["network_weights"] = flux_models["lora_path"]
config_dict.update(kwargs)
config_dict.update(optimizer_settings)
if loss_args:
config_dict.update(loss_args)
if resume_args:
config_dict.update(resume_args)
for key, value in config_dict.items():
setattr(args, key, value)
#network args
additional_network_args = []
if "T5" in train_text_encoder:
additional_network_args.append("train_t5xxl=True")
if block_args:
additional_network_args.append(block_args["include"])
# Handle network_args in args Namespace
if hasattr(args, 'network_args') and isinstance(args.network_args, list):
args.network_args.extend(additional_network_args)
else:
setattr(args, 'network_args', additional_network_args)
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json")
with open(saved_args_file_path, 'w') as f:
json.dump(vars(args), f, indent=4)
#workflow saving
metadata = {}
if extra_pnginfo is not None:
metadata.update(extra_pnginfo["workflow"])
saved_workflow_file_path = os.path.join(output_dir, f"{output_name}_workflow.json")
with open(saved_workflow_file_path, 'w') as f:
json.dump(metadata, f, indent=4)
#pass args to kohya and initialize trainer
with torch.inference_mode(False):
network_trainer = FluxNetworkTrainer()
training_loop = network_trainer.init_train(args)
epochs_count = network_trainer.num_train_epochs
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, args)
class InitFluxTraining:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset": ("JSON",),
"optimizer_settings": ("ARGS",),
"output_name": ("STRING", {"default": "flux", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}),
"learning_rate": ("FLOAT", {"default": 4e-6, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}),
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "apply t5 attention mask"}),
"t5xxl_max_token_length": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "dev and LibreFlux uses 512, schnell 256"}),
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}),
"weighting_scheme": (["logit_normal", "sigma_sqrt", "mode", "cosmap", "none"],),
"logit_mean": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "mean to use when using the logit_normal weighting scheme"}),
"logit_std": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01,"tooltip": "std to use when using the logit_normal weighting scheme"}),
"mode_scale": ("FLOAT", {"default": 1.29, "min": 0.0, "max": 10.0, "step": 0.01, "tooltip": "Scale of mode weighting scheme. Only effective when using the mode as the weighting_scheme"}),
"loss_type": (["l1", "l2", "huber", "smooth_l1"], {"default": "l2", "tooltip": "loss type"}),
"timestep_sampling": (["sigmoid", "uniform", "sigma", "shift", "flux_shift"], {"tooltip": "Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal and shift of sigmoid (recommend value of 3.1582 for discrete_flow_shift)"}),
"sigmoid_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1, "tooltip": "Scale factor for sigmoid timestep sampling (only used when timestep-sampling is sigmoid"}),
"model_prediction_type": (["raw", "additive", "sigma_scaled"], {"tooltip": "How to interpret and process the model prediction: raw (use as is), additive (add to noisy input), sigma_scaled (apply sigma scaling)"}),
"cpu_offload_checkpointing": ("BOOLEAN", {"default": True, "tooltip": "offload the gradient checkpointing to CPU. This reduces VRAM usage for about 2GB"}),
"optimizer_fusing": (['fused_backward_pass', 'blockwise_fused_optimizers'], {"tooltip": "reduces memory use"}),
"blocks_to_swap": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "Sets the number of blocks (~640MB) to swap during the forward and backward passes, increasing this number lowers the overall VRAM used during training at the expense of training speed (s/it)."}),
"guidance_scale": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 32.0, "step": 0.01, "tooltip": "guidance scale"}),
"discrete_flow_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "for the Euler Discrete Scheduler, default is 3.0"}),
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}),
"fp8_base": ("BOOLEAN", {"default": False, "tooltip": "use fp8 for base model"}),
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "bf16", "tooltip": "to use the full fp16/bf16 training"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}),
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
"optional": {
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}),
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS")
RETURN_NAMES = ("network_trainer", "epochs_count", "args")
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, optimizer_settings, dataset, sample_prompts, output_name,
attention_mode, gradient_dtype, save_dtype, optimizer_fusing, additional_args=None, resume_args=None, **kwargs,):
mm.soft_empty_cache()
output_dir = os.path.abspath(kwargs.get("output_dir"))
os.makedirs(output_dir, exist_ok=True)
total, used, free = shutil.disk_usage(output_dir)
required_free_space = 25 * (2**30)
if free <= required_free_space:
raise ValueError(f"Most likely insufficient disk space to complete training. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB")
dataset_config = dataset["datasets"]
dataset_toml = toml.dumps(json.loads(dataset_config))
parser = train_setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
if additional_args is not None:
print(f"additional_args: {additional_args}")
args, _ = parser.parse_known_args(args=shlex.split(additional_args))
else:
args, _ = parser.parse_known_args()
if kwargs.get("cache_latents") == "memory":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = False
elif kwargs.get("cache_latents") == "disk":
kwargs["cache_latents"] = True
kwargs["cache_latents_to_disk"] = True
kwargs["caption_dropout_rate"] = 0.0
kwargs["shuffle_caption"] = False
kwargs["token_warmup_step"] = 0.0
kwargs["caption_tag_dropout_rate"] = 0.0
else:
kwargs["cache_latents"] = False
kwargs["cache_latents_to_disk"] = False
if kwargs.get("cache_text_encoder_outputs") == "memory":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = False
elif kwargs.get("cache_text_encoder_outputs") == "disk":
kwargs["cache_text_encoder_outputs"] = True
kwargs["cache_text_encoder_outputs_to_disk"] = True
else:
kwargs["cache_text_encoder_outputs"] = False
kwargs["cache_text_encoder_outputs_to_disk"] = False
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
config_dict = {
"sample_prompts": prompts,
"save_precision": save_dtype,
"mixed_precision": "bf16",
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"gradient_checkpointing": True,
"dataset_config": dataset_toml,
"output_name": f"{output_name}_{save_dtype}",
"mem_eff_save": True,
"disable_mmap_load_safetensors": True,
}
optimizer_fusing_settings = {
"fused_backward_pass": {"fused_backward_pass": True, "blockwise_fused_optimizers": False},
"blockwise_fused_optimizers": {"fused_backward_pass": False, "blockwise_fused_optimizers": True}
}
config_dict.update(optimizer_fusing_settings.get(optimizer_fusing, {}))
attention_settings = {
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True},
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False}
}
config_dict.update(attention_settings.get(attention_mode, {}))
gradient_dtype_settings = {
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"},
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"}
}
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {}))
config_dict.update(kwargs)
config_dict.update(optimizer_settings)
if resume_args:
config_dict.update(resume_args)
for key, value in config_dict.items():
setattr(args, key, value)
with torch.inference_mode(False):
network_trainer = FluxTrainer()
training_loop = network_trainer.init_train(args)
epochs_count = network_trainer.num_train_epochs
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json")
with open(saved_args_file_path, 'w') as f:
json.dump(vars(args), f, indent=4)
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, args)
class InitFluxTrainingFromPreset:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"dataset_settings": ("TOML_DATASET",),
"preset_args": ("KOHYA_ARGS",),
"output_name": ("STRING", {"default": "flux", "multiline": False}),
"output_dir": ("STRING", {"default": "flux_trainer_output", "multiline": False, "tooltip": "output directory, root is ComfyUI folder"}),
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT", "STRING", "KOHYA_ARGS")
RETURN_NAMES = ("network_trainer", "epochs_count", "output_path", "args")
FUNCTION = "init_training"
CATEGORY = "FluxTrainer"
def init_training(self, flux_models, dataset_settings, sample_prompts, output_name, preset_args, **kwargs,):
mm.soft_empty_cache()
dataset = dataset_settings["dataset"]
dataset_repeats = dataset_settings["repeats"]
parser = train_setup_parser()
args, _ = parser.parse_known_args()
for key, value in vars(preset_args).items():
setattr(args, key, value)
output_dir = os.path.join(script_directory, "output")
if '|' in sample_prompts:
prompts = sample_prompts.split('|')
else:
prompts = [sample_prompts]
width, height = toml.loads(dataset)["datasets"][0]["resolution"]
config_dict = {
"sample_prompts": prompts,
"dataset_repeats": dataset_repeats,
"num_cpu_threads_per_process": 1,
"pretrained_model_name_or_path": flux_models["transformer"],
"clip_l": flux_models["clip_l"],
"t5xxl": flux_models["t5"],
"ae": flux_models["vae"],
"save_model_as": "safetensors",
"persistent_data_loader_workers": False,
"max_data_loader_n_workers": 0,
"seed": 42,
"gradient_checkpointing": True,
"dataset_config": dataset,
"output_dir": output_dir,
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{args.save_precision}",
"width" : int(width),
"height" : int(height),
}
config_dict.update(kwargs)
for key, value in config_dict.items():
setattr(args, key, value)
with torch.inference_mode(False):
network_trainer = FluxNetworkTrainer()
training_loop = network_trainer.init_train(args)
final_output_path = os.path.join(output_dir, output_name)
epochs_count = network_trainer.num_train_epochs
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, epochs_count, final_output_path, args)
class FluxTrainLoop:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"steps": ("INT", {"default": 1, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "INT",)
RETURN_NAMES = ("network_trainer", "steps",)
FUNCTION = "train"
CATEGORY = "FluxTrainer"
def train(self, network_trainer, steps):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
initial_global_step = network_trainer.global_step
target_global_step = network_trainer.global_step + steps
comfy_pbar = comfy.utils.ProgressBar(steps)
network_trainer.comfy_pbar = comfy_pbar
network_trainer.optimizer_train_fn()
while network_trainer.global_step < target_global_step:
steps_done = training_loop(
break_at_steps = target_global_step,
epoch = network_trainer.current_epoch.value,
)
#pbar.update(steps_done)
# Also break if the global steps have reached the max train steps
if network_trainer.global_step >= network_trainer.args.max_train_steps:
break
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, network_trainer.global_step)
class FluxTrainAndValidateLoop:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"validate_at_steps": ("INT", {"default": 250, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
"save_at_steps": ("INT", {"default": 250, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}),
},
"optional": {
"validation_settings": ("VALSETTINGS",),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "INT",)
RETURN_NAMES = ("network_trainer", "steps",)
FUNCTION = "train"
CATEGORY = "FluxTrainer"
def train(self, network_trainer, validate_at_steps, save_at_steps, validation_settings=None):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
target_global_step = network_trainer.args.max_train_steps
comfy_pbar = comfy.utils.ProgressBar(target_global_step)
network_trainer.comfy_pbar = comfy_pbar
network_trainer.optimizer_train_fn()
while network_trainer.global_step < target_global_step:
next_validate_step = ((network_trainer.global_step // validate_at_steps) + 1) * validate_at_steps
next_save_step = ((network_trainer.global_step // save_at_steps) + 1) * save_at_steps
steps_done = training_loop(
break_at_steps=min(next_validate_step, next_save_step),
epoch=network_trainer.current_epoch.value,
)
# Check if we need to validate
if network_trainer.global_step % validate_at_steps == 0:
self.validate(network_trainer, validation_settings)
# Check if we need to save
if network_trainer.global_step % save_at_steps == 0:
self.save(network_trainer)
# Also break if the global steps have reached the max train steps
if network_trainer.global_step >= network_trainer.args.max_train_steps:
break
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, network_trainer.global_step)
def validate(self, network_trainer, validation_settings=None):
params = (
network_trainer.current_epoch.value,
network_trainer.global_step,
validation_settings
)
network_trainer.optimizer_eval_fn()
image_tensors = network_trainer.sample_images(*params)
network_trainer.optimizer_train_fn()
print("Validating at step:", network_trainer.global_step)
def save(self, network_trainer):
ckpt_name = train_util.get_step_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as, network_trainer.global_step)
network_trainer.optimizer_eval_fn()
network_trainer.save_model(ckpt_name, network_trainer.accelerator.unwrap_model(network_trainer.network), network_trainer.global_step, network_trainer.current_epoch.value + 1)
network_trainer.optimizer_train_fn()
print("Saving at step:", network_trainer.global_step)
class FluxTrainSave:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": False, "tooltip": "save the whole model state as well"}),
"copy_to_comfy_lora_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",)
RETURN_NAMES = ("network_trainer","lora_path", "steps",)
FUNCTION = "save"
CATEGORY = "FluxTrainer"
def save(self, network_trainer, save_state, copy_to_comfy_lora_folder):
import shutil
with torch.inference_mode(False):
trainer = network_trainer["network_trainer"]
global_step = trainer.global_step
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step)
trainer.save_model(ckpt_name, trainer.accelerator.unwrap_model(trainer.network), global_step, trainer.current_epoch.value + 1)
remove_step_no = train_util.get_remove_step_no(trainer.args, global_step)
if remove_step_no is not None:
remove_ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, remove_step_no)
trainer.remove_model(remove_ckpt_name)
if save_state:
train_util.save_and_remove_state_stepwise(trainer.args, trainer.accelerator, global_step)
lora_path = os.path.join(trainer.args.output_dir, ckpt_name)
if copy_to_comfy_lora_folder:
destination_dir = os.path.join(folder_paths.models_dir, "loras", "flux_trainer")
os.makedirs(destination_dir, exist_ok=True)
shutil.copy(lora_path, os.path.join(destination_dir, ckpt_name))
return (network_trainer, lora_path, global_step)
class FluxTrainSaveModel:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"copy_to_comfy_model_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}),
"end_training": ("BOOLEAN", {"default": False, "tooltip": "end the training"}),
},
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",)
RETURN_NAMES = ("network_trainer","model_path", "steps",)
FUNCTION = "save"
CATEGORY = "FluxTrainer"
def save(self, network_trainer, copy_to_comfy_model_folder, end_training):
import shutil
with torch.inference_mode(False):
trainer = network_trainer["network_trainer"]
global_step = trainer.global_step
trainer.optimizer_eval_fn()
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step)
flux_train_utils.save_flux_model_on_epoch_end_or_stepwise(
trainer.args,
False,
trainer.accelerator,
trainer.save_dtype,
trainer.current_epoch.value,
trainer.num_train_epochs,
global_step,
trainer.accelerator.unwrap_model(trainer.unet)
)
model_path = os.path.join(trainer.args.output_dir, ckpt_name)
if copy_to_comfy_model_folder:
shutil.copy(model_path, os.path.join(folder_paths.models_dir, "diffusion_models", "flux_trainer", ckpt_name))
model_path = os.path.join(folder_paths.models_dir, "diffusion_models", "flux_trainer", ckpt_name)
if end_training:
trainer.accelerator.end_training()
return (network_trainer, model_path, global_step)
class FluxTrainEnd:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"save_state": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("STRING", "STRING", "STRING",)
RETURN_NAMES = ("lora_name", "metadata", "lora_path",)
FUNCTION = "endtrain"
CATEGORY = "FluxTrainer"
OUTPUT_NODE = True
def endtrain(self, network_trainer, save_state):
with torch.inference_mode(False):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
network_trainer.metadata["ss_epoch"] = str(network_trainer.num_train_epochs)
network_trainer.metadata["ss_training_finished_at"] = str(time.time())
network = network_trainer.accelerator.unwrap_model(network_trainer.network)
network_trainer.accelerator.end_training()
network_trainer.optimizer_eval_fn()
if save_state:
train_util.save_state_on_train_end(network_trainer.args, network_trainer.accelerator)
ckpt_name = train_util.get_last_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as)
network_trainer.save_model(ckpt_name, network, network_trainer.global_step, network_trainer.num_train_epochs, force_sync_upload=True)
logger.info("model saved.")
final_lora_name = str(network_trainer.args.output_name)
final_lora_path = os.path.join(network_trainer.args.output_dir, ckpt_name)
# metadata
metadata = json.dumps(network_trainer.metadata, indent=2)
training_loop = None
network_trainer = None
mm.soft_empty_cache()
return (final_lora_name, metadata, final_lora_path)
class FluxTrainResume:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"load_state_path": ("STRING", {"default": "", "multiline": True, "tooltip": "path to load state from"}),
"skip_until_initial_step" : ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("ARGS", )
RETURN_NAMES = ("resume_args", )
FUNCTION = "resume"
CATEGORY = "FluxTrainer"
def resume(self, load_state_path, skip_until_initial_step):
resume_args ={
"resume": load_state_path,
"skip_until_initial_step": skip_until_initial_step
}
return (resume_args, )
class FluxTrainBlockSelect:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"include": ("STRING", {"default": "lora_unet_single_blocks_20_linear2", "multiline": True, "tooltip": "blocks to include in the LoRA network, to select multiple blocks either input them as "}),
},
}
RETURN_TYPES = ("ARGS", )
RETURN_NAMES = ("block_args", )
FUNCTION = "block_select"
CATEGORY = "FluxTrainer"
def block_select(self, include):
import re
# Split the input string by commas to handle multiple ranges/blocks
elements = include.split(',')
# Initialize a list to collect block names
blocks = []
# Pattern to find ranges like (10-20)
pattern = re.compile(r'\((\d+)-(\d+)\)')
# Extract the prefix and suffix from the first element
prefix_suffix_pattern = re.compile(r'(.*)_blocks_(.*)')
for element in elements:
element = element.strip()
match = prefix_suffix_pattern.match(element)
if match:
prefix = match.group(1) + "_blocks_"
suffix = match.group(2)
matches = pattern.findall(suffix)
if matches:
for start, end in matches:
# Generate block names for the range and add them to the list
blocks.extend([f"{prefix}{i}{suffix.replace(f'({start}-{end})', '', 1)}" for i in range(int(start), int(end) + 1)])
else:
# If no range is found, add the block name directly
blocks.append(element)
else:
blocks.append(element)
# Construct the `include` string
include_string = ','.join(blocks)
block_args = {
"include": f"only_if_contains={include_string}",
}
return (block_args, )
class FluxTrainValidationSettings:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}),
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}),
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"shift": ("BOOLEAN", {"default": True, "tooltip": "shift the schedule to favor high timesteps for higher signal images"}),
"base_shift": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
"max_shift": ("FLOAT", {"default": 1.15, "min": 0.0, "max": 10.0, "step": 0.01}),
},
}
RETURN_TYPES = ("VALSETTINGS", )
RETURN_NAMES = ("validation_settings", )
FUNCTION = "set"
CATEGORY = "FluxTrainer"
def set(self, **kwargs):
validation_settings = kwargs
print(validation_settings)
return (validation_settings,)
class FluxTrainValidate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"network_trainer": ("NETWORKTRAINER",),
},
"optional": {
"validation_settings": ("VALSETTINGS",),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "IMAGE",)
RETURN_NAMES = ("network_trainer", "validation_images",)
FUNCTION = "validate"
CATEGORY = "FluxTrainer"
def validate(self, network_trainer, validation_settings=None):
training_loop = network_trainer["training_loop"]
network_trainer = network_trainer["network_trainer"]
params = (
network_trainer.current_epoch.value,
network_trainer.global_step,
validation_settings
)
network_trainer.optimizer_eval_fn()
with torch.inference_mode(False):
image_tensors = network_trainer.sample_images(*params)
trainer = {
"network_trainer": network_trainer,
"training_loop": training_loop,
}
return (trainer, (0.5 * (image_tensors + 1.0)).cpu().float(),)
class VisualizeLoss:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"network_trainer": ("NETWORKTRAINER",),
"plot_style": (plt.style.available,{"default": 'default', "tooltip": "matplotlib plot style"}),
"window_size": ("INT", {"default": 100, "min": 0, "max": 10000, "step": 1, "tooltip": "the window size of the moving average"}),
"normalize_y": ("BOOLEAN", {"default": True, "tooltip": "normalize the y-axis to 0"}),
"width": ("INT", {"default": 768, "min": 256, "max": 4096, "step": 2, "tooltip": "width of the plot in pixels"}),
"height": ("INT", {"default": 512, "min": 256, "max": 4096, "step": 2, "tooltip": "height of the plot in pixels"}),
"log_scale": ("BOOLEAN", {"default": False, "tooltip": "use log scale on the y-axis"}),
},
}
RETURN_TYPES = ("IMAGE", "FLOAT",)
RETURN_NAMES = ("plot", "loss_list",)
FUNCTION = "draw"
CATEGORY = "FluxTrainer"
def draw(self, network_trainer, window_size, plot_style, normalize_y, width, height, log_scale):
import numpy as np
loss_values = network_trainer["network_trainer"].loss_recorder.global_loss_list
# Apply moving average
def moving_average(values, window_size):
return np.convolve(values, np.ones(window_size) / window_size, mode='valid')
if window_size > 0:
loss_values = moving_average(loss_values, window_size)
plt.style.use(plot_style)
# Convert pixels to inches (assuming 100 pixels per inch)
width_inches = width / 100
height_inches = height / 100
# Create a plot
fig, ax = plt.subplots(figsize=(width_inches, height_inches))
ax.plot(loss_values, label='Training Loss')
ax.set_xlabel('Step')
ax.set_ylabel('Loss')
if normalize_y:
plt.ylim(bottom=0)
if log_scale:
ax.set_yscale('log')
ax.set_title('Training Loss Over Time')
ax.legend()
ax.grid(True)
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(fig)
buf.seek(0)
image = Image.open(buf).convert('RGB')
image_tensor = transforms.ToTensor()(image)
image_tensor = image_tensor.unsqueeze(0).permute(0, 2, 3, 1).cpu().float()
return image_tensor, loss_values,
class FluxKohyaInferenceSampler:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"flux_models": ("TRAIN_FLUX_MODELS",),
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"lora_method": (["apply", "merge"], {"tooltip": "whether to apply or merge the lora weights"}),
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}),
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}),
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"use_fp8": ("BOOLEAN", {"default": True, "tooltip": "use fp8 weights"}),
"apply_t5_attn_mask": ("BOOLEAN", {"default": True, "tooltip": "use t5 attention mask"}),
"prompt": ("STRING", {"multiline": True, "default": "illustration of a kitten", "tooltip": "prompt"}),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("image", )
FUNCTION = "sample"
CATEGORY = "FluxTrainer"
def sample(self, flux_models, lora_name, steps, width, height, guidance_scale, seed, prompt, use_fp8, lora_method, apply_t5_attn_mask):
from .library import flux_utils as flux_utils
from .library import strategy_flux as strategy_flux
from .networks import lora_flux as lora_flux
from typing import List, Optional, Callable
from tqdm import tqdm
import einops
import math
import accelerate
import gc
device = "cuda"
if use_fp8:
accelerator = accelerate.Accelerator(mixed_precision="bf16")
dtype = torch.float8_e4m3fn
else:
dtype = torch.float16
accelerator = None
loading_device = "cpu"
ae_dtype = torch.bfloat16
pretrained_model_name_or_path = flux_models["transformer"]
clip_l = flux_models["clip_l"]
t5xxl = flux_models["t5"]
ae = flux_models["vae"]
lora_path = folder_paths.get_full_path("loras", lora_name)
# load clip_l
logger.info(f"Loading clip_l from {clip_l}...")
clip_l = flux_utils.load_clip_l(clip_l, None, loading_device)
clip_l.eval()
logger.info(f"Loading t5xxl from {t5xxl}...")
t5xxl = flux_utils.load_t5xxl(t5xxl, None, loading_device)
t5xxl.eval()
if use_fp8:
clip_l = accelerator.prepare(clip_l)
t5xxl = accelerator.prepare(t5xxl)
t5xxl_max_length = 512
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_length)
encoding_strategy = strategy_flux.FluxTextEncodingStrategy()
# DiT
model = flux_utils.load_flow_model("dev", pretrained_model_name_or_path, dtype, loading_device)
model.eval()
logger.info(f"Casting model to {dtype}")
model.to(dtype) # make sure model is dtype
if use_fp8:
model = accelerator.prepare(model)
# AE
ae = flux_utils.load_ae("dev", ae, ae_dtype, loading_device)
ae.eval()
# LoRA
lora_models: List[lora_flux.LoRANetwork] = []
multiplier = 1.0
lora_model, weights_sd = lora_flux.create_network_from_weights(
multiplier, lora_path, ae, [clip_l, t5xxl], model, None, True
)
if lora_method == "merge":
lora_model.merge_to([clip_l, t5xxl], model, weights_sd)
elif lora_method == "apply":
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {lora_name}: {info}")
lora_model.eval()
lora_model.to(device)
lora_models.append(lora_model)
packed_latent_height, packed_latent_width = math.ceil(height / 16), math.ceil(width / 16)
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=device,
dtype=ae_dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width)
# prepare embeddings
logger.info("Encoding prompts...")
tokens_and_masks = tokenize_strategy.tokenize(prompt)
clip_l = clip_l.to(device)
t5xxl = t5xxl.to(device)
with torch.no_grad():
if use_fp8:
clip_l.to(ae_dtype)
t5xxl.to(ae_dtype)
with accelerator.autocast():
l_pooled, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
with torch.autocast(device_type=device.type, dtype=dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
# NaN check
if torch.isnan(l_pooled).any():
raise ValueError("NaN in l_pooled")
if torch.isnan(t5_out).any():
raise ValueError("NaN in t5_out")
clip_l = clip_l.cpu()
t5xxl = t5xxl.cpu()
gc.collect()
torch.cuda.empty_cache()
# generate image
logger.info("Generating image...")
model = model.to(device)
print("MODEL DTYPE: ", model.dtype)
img_ids = img_ids.to(device)
t5_attn_mask = t5_attn_mask.to(device) if apply_t5_attn_mask else None
def time_shift(mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
timesteps: list[float],
guidance: float = 4.0,
t5_attn_mask: Optional[torch.Tensor] = None,
):
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
comfy_pbar = comfy.utils.ProgressBar(total=len(timesteps))
for t_curr, t_prev in zip(tqdm(timesteps[:-1]), timesteps[1:]):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
img = img + (t_prev - t_curr) * pred
comfy_pbar.update(1)
return img
def do_sample(
accelerator: Optional[accelerate.Accelerator],
model,
img: torch.Tensor,
img_ids: torch.Tensor,
l_pooled: torch.Tensor,
t5_out: torch.Tensor,
txt_ids: torch.Tensor,
num_steps: int,
guidance: float,
t5_attn_mask: Optional[torch.Tensor],
is_schnell: bool,
device: torch.device,
flux_dtype: torch.dtype,
):
timesteps = get_schedule(num_steps, img.shape[1], shift=not is_schnell)
print(timesteps)
# denoise initial noise
if accelerator:
with accelerator.autocast(), torch.no_grad():
x = denoise(
model, img, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=guidance, t5_attn_mask=t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=flux_dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
with torch.autocast(device_type=device.type, dtype=flux_dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, apply_t5_attn_mask
)
return x
x = do_sample(accelerator, model, noise, img_ids, l_pooled, t5_out, txt_ids, steps, guidance_scale, t5_attn_mask, False, device, dtype)
model = model.cpu()
gc.collect()
torch.cuda.empty_cache()
# unpack
x = x.float()
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
# decode
logger.info("Decoding image...")
ae = ae.to(device)
with torch.no_grad():
if use_fp8:
with accelerator.autocast():
x = ae.decode(x)
else:
with torch.autocast(device_type=device.type, dtype=ae_dtype):
x = ae.decode(x)
ae = ae.cpu()
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
return ((0.5 * (x + 1.0)).cpu().float(),)
class UploadToHuggingFace:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"network_trainer": ("NETWORKTRAINER",),
"source_path": ("STRING", {"default": ""}),
"repo_id": ("STRING",{"default": ""}),
"revision": ("STRING", {"default": ""}),
"private": ("BOOLEAN", {"default": True, "tooltip": "If creating a new repo, leave it private"}),
},
"optional": {
"token": ("STRING", {"default": "","tooltip":"DO NOT LEAVE IN THE NODE or it might save in metadata, can also use the hf_token.json"}),
}
}
RETURN_TYPES = ("NETWORKTRAINER", "STRING",)
RETURN_NAMES = ("network_trainer","status",)
FUNCTION = "upload"
CATEGORY = "FluxTrainer"
def upload(self, source_path, network_trainer, repo_id, private, revision, token=""):
with torch.inference_mode(False):
from huggingface_hub import HfApi
if not token:
with open(os.path.join(script_directory, "hf_token.json"), "r") as file:
token_data = json.load(file)
token = token_data["hf_token"]
print(token)
# Save metadata to a JSON file
directory_path = os.path.dirname(os.path.dirname(source_path))
file_name = os.path.basename(source_path)
metadata = network_trainer["network_trainer"].metadata
metadata_file_path = os.path.join(directory_path, "metadata.json")
with open(metadata_file_path, 'w') as f:
json.dump(metadata, f, indent=4)
repo_type = None
api = HfApi(token=token)
try:
api.repo_info(
repo_id=repo_id,
revision=revision if revision != "" else None,
repo_type=repo_type)
repo_exists = True
logger.info(f"Repository {repo_id} exists.")
except Exception as e: # Catching a more specific exception would be better if you know what to expect
repo_exists = False
logger.error(f"Repository {repo_id} does not exist. Exception: {e}")
if not repo_exists:
try:
api.create_repo(repo_id=repo_id, repo_type=repo_type, private=private)
except Exception as e: # Checked for RepositoryNotFoundError, but other exceptions could be problematic
logger.error("===========================================")
logger.error(f"failed to create HuggingFace repo: {e}")
logger.error("===========================================")
is_folder = (type(source_path) == str and os.path.isdir(source_path)) or (isinstance(source_path, Path) and source_path.is_dir())
print(source_path, is_folder)
try:
if is_folder:
api.upload_folder(
repo_id=repo_id,
repo_type=repo_type,
folder_path=source_path,
path_in_repo=file_name,
)
else:
api.upload_file(
repo_id=repo_id,
repo_type=repo_type,
path_or_fileobj=source_path,
path_in_repo=file_name,
)
# Upload the metadata file separately if it's not a folder upload
if not is_folder:
api.upload_file(
repo_id=repo_id,
repo_type=repo_type,
path_or_fileobj=str(metadata_file_path),
path_in_repo='metadata.json',
)
status = "Uploaded to HuggingFace succesfully"
except Exception as e: # RuntimeErrorを確認済みだが他にあると困るので
logger.error("===========================================")
logger.error(f"failed to upload to HuggingFace / HuggingFaceへのアップロードに失敗しました : {e}")
logger.error("===========================================")
status = f"Failed to upload to HuggingFace {e}"
return (network_trainer, status,)
class ExtractFluxLoRA:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"original_model": (folder_paths.get_filename_list("unet"), ),
"finetuned_model": (folder_paths.get_filename_list("unet"), ),
"output_path": ("STRING", {"default": f"{str(os.path.join(folder_paths.models_dir, 'loras', 'Flux'))}"}),
"dim": ("INT", {"default": 4, "min": 2, "max": 1024, "step": 2, "tooltip": "LoRA rank"}),
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save the LoRA as"}),
"load_device": (["cpu", "cuda"], {"default": "cuda", "tooltip": "the device to load the model to"}),
"store_device": (["cpu", "cuda"], {"default": "cpu", "tooltip": "the device to store the LoRA as"}),
"clamp_quantile": ("FLOAT", {"default": 0.99, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "clamp quantile"}),
"metadata": ("BOOLEAN", {"default": True, "tooltip": "build metadata"}),
"mem_eff_safe_open": ("BOOLEAN", {"default": False, "tooltip": "memory efficient loading"}),
},
}
RETURN_TYPES = ("STRING", )
RETURN_NAMES = ("output_path",)
FUNCTION = "extract"
CATEGORY = "FluxTrainer"
def extract(self, original_model, finetuned_model, output_path, dim, save_dtype, load_device, store_device, clamp_quantile, metadata, mem_eff_safe_open):
from .flux_extract_lora import svd
transformer_path = folder_paths.get_full_path("unet", original_model)
finetuned_model_path = folder_paths.get_full_path("unet", finetuned_model)
outpath = svd(
model_org = transformer_path,
model_tuned = finetuned_model_path,
save_to = os.path.join(output_path, f"{finetuned_model.replace('.safetensors', '')}_extracted_lora_rank_{dim}-{save_dtype}.safetensors"),
dim = dim,
device = load_device,
store_device = store_device,
save_precision = save_dtype,
clamp_quantile = clamp_quantile,
no_metadata = not metadata,
mem_eff_safe_open = mem_eff_safe_open
)
return (outpath,)
NODE_CLASS_MAPPINGS = {
"InitFluxLoRATraining": InitFluxLoRATraining,
"InitFluxTraining": InitFluxTraining,
"FluxTrainModelSelect": FluxTrainModelSelect,
"TrainDatasetGeneralConfig": TrainDatasetGeneralConfig,
"TrainDatasetAdd": TrainDatasetAdd,
"FluxTrainLoop": FluxTrainLoop,
"VisualizeLoss": VisualizeLoss,
"FluxTrainValidate": FluxTrainValidate,
"FluxTrainValidationSettings": FluxTrainValidationSettings,
"FluxTrainEnd": FluxTrainEnd,
"FluxTrainSave": FluxTrainSave,
"FluxKohyaInferenceSampler": FluxKohyaInferenceSampler,
"UploadToHuggingFace": UploadToHuggingFace,
"OptimizerConfig": OptimizerConfig,
"OptimizerConfigAdafactor": OptimizerConfigAdafactor,
"FluxTrainSaveModel": FluxTrainSaveModel,
"ExtractFluxLoRA": ExtractFluxLoRA,
"OptimizerConfigProdigy": OptimizerConfigProdigy,
"FluxTrainResume": FluxTrainResume,
"FluxTrainBlockSelect": FluxTrainBlockSelect,
"TrainDatasetRegularization": TrainDatasetRegularization,
"FluxTrainAndValidateLoop": FluxTrainAndValidateLoop,
"OptimizerConfigProdigyPlusScheduleFree": OptimizerConfigProdigyPlusScheduleFree,
"FluxTrainerLossConfig": FluxTrainerLossConfig,
"TrainNetworkConfig": TrainNetworkConfig,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"InitFluxLoRATraining": "Init Flux LoRA Training",
"InitFluxTraining": "Init Flux Training",
"FluxTrainModelSelect": "FluxTrain ModelSelect",
"TrainDatasetGeneralConfig": "TrainDatasetGeneralConfig",
"TrainDatasetAdd": "TrainDatasetAdd",
"FluxTrainLoop": "Flux Train Loop",
"VisualizeLoss": "Visualize Loss",
"FluxTrainValidate": "Flux Train Validate",
"FluxTrainValidationSettings": "Flux Train Validation Settings",
"FluxTrainEnd": "Flux LoRA Train End",
"FluxTrainSave": "Flux Train Save LoRA",
"FluxKohyaInferenceSampler": "Flux Kohya Inference Sampler",
"UploadToHuggingFace": "Upload To HuggingFace",
"OptimizerConfig": "Optimizer Config",
"OptimizerConfigAdafactor": "Optimizer Config Adafactor",
"FluxTrainSaveModel": "Flux Train Save Model",
"ExtractFluxLoRA": "Extract Flux LoRA",
"OptimizerConfigProdigy": "Optimizer Config Prodigy",
"FluxTrainResume": "Flux Train Resume",
"FluxTrainBlockSelect": "Flux Train Block Select",
"TrainDatasetRegularization": "Train Dataset Regularization",
"FluxTrainAndValidateLoop": "Flux Train And Validate Loop",
"OptimizerConfigProdigyPlusScheduleFree": "Optimizer Config ProdigyPlusScheduleFree",
"FluxTrainerLossConfig": "Flux Trainer Loss Config",
"TrainNetworkConfig": "Train Network Config",
}
|