File size: 23,909 Bytes
cc69848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import argparse
import math
from typing import Any, Optional
import torch
from accelerate import Accelerator
from .library import sd3_models, strategy_sd3, utils
from .library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from .library import flux_models, flux_utils, sd3_train_utils, sd3_utils, strategy_base, strategy_sd3, train_util
from . import train_network
from .library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class Sd3NetworkTrainer(train_network.NetworkTrainer):
def __init__(self):
super().__init__()
self.sample_prompts_te_outputs = None
def assert_extra_args(self, args, train_dataset_group: train_util.DatasetGroup):
# super().assert_extra_args(args, train_dataset_group)
# sdxl_train_util.verify_sdxl_training_args(args)
if args.fp8_base_unet:
args.fp8_base = True # if fp8_base_unet is enabled, fp8_base is also enabled for SD3
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# prepare CLIP-L/CLIP-G/T5XXL training flags
self.train_clip = not args.network_train_unet_only
self.train_t5xxl = False # default is False even if args.network_train_unet_only is False
if args.max_token_length is not None:
logger.warning("max_token_length is not used in Flux training / max_token_lengthはFluxのトレーニングでは使用されません")
assert (
args.blocks_to_swap is None or args.blocks_to_swap == 0
) or not args.cpu_offload_checkpointing, "blocks_to_swap is not supported with cpu_offload_checkpointing / blocks_to_swapはcpu_offload_checkpointingと併用できません"
train_dataset_group.verify_bucket_reso_steps(32) # TODO check this
# enumerate resolutions from dataset for positional embeddings
self.resolutions = train_dataset_group.get_resolutions()
def load_target_model(self, args, weight_dtype, accelerator):
# currently offload to cpu for some models
# if the file is fp8 and we are using fp8_base, we can load it as is (fp8)
loading_dtype = None if args.fp8_base else weight_dtype
# if we load to cpu, flux.to(fp8) takes a long time, so we should load to gpu in future
state_dict = utils.load_safetensors(
args.pretrained_model_name_or_path, "cpu", disable_mmap=args.disable_mmap_load_safetensors, dtype=loading_dtype
)
mmdit = sd3_utils.load_mmdit(state_dict, loading_dtype, "cpu")
self.model_type = mmdit.model_type
mmdit.set_pos_emb_random_crop_rate(args.pos_emb_random_crop_rate)
# set resolutions for positional embeddings
if args.enable_scaled_pos_embed:
latent_sizes = [round(math.sqrt(res[0] * res[1])) // 8 for res in self.resolutions] # 8 is stride for latent
latent_sizes = list(set(latent_sizes)) # remove duplicates
logger.info(f"Prepare scaled positional embeddings for resolutions: {self.resolutions}, sizes: {latent_sizes}")
mmdit.enable_scaled_pos_embed(True, latent_sizes)
if args.fp8_base:
# check dtype of model
if mmdit.dtype == torch.float8_e4m3fnuz or mmdit.dtype == torch.float8_e5m2 or mmdit.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {mmdit.dtype}")
elif mmdit.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 SD3 model")
else:
logger.info(
"Cast SD3 model to fp8. This may take a while. You can reduce the time by using fp8 checkpoint."
)
mmdit.to(torch.float8_e4m3fn)
self.is_swapping_blocks = args.blocks_to_swap is not None and args.blocks_to_swap > 0
if self.is_swapping_blocks:
# Swap blocks between CPU and GPU to reduce memory usage, in forward and backward passes.
logger.info(f"enable block swap: blocks_to_swap={args.blocks_to_swap}")
mmdit.enable_block_swap(args.blocks_to_swap, accelerator.device)
clip_l = sd3_utils.load_clip_l(
args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors, state_dict=state_dict
)
clip_l.eval()
clip_g = sd3_utils.load_clip_g(
args.clip_g, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors, state_dict=state_dict
)
clip_g.eval()
# if the file is fp8 and we are using fp8_base (not unet), we can load it as is (fp8)
if args.fp8_base and not args.fp8_base_unet:
loading_dtype = None # as is
else:
loading_dtype = weight_dtype
# loading t5xxl to cpu takes a long time, so we should load to gpu in future
t5xxl = sd3_utils.load_t5xxl(
args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors, state_dict=state_dict
)
t5xxl.eval()
if args.fp8_base and not args.fp8_base_unet:
# check dtype of model
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
vae = sd3_utils.load_vae(
args.vae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors, state_dict=state_dict
)
return mmdit.model_type, [clip_l, clip_g, t5xxl], vae, mmdit
def get_tokenize_strategy(self, args):
logger.info(f"t5xxl_max_token_length: {args.t5xxl_max_token_length}")
return strategy_sd3.Sd3TokenizeStrategy(args.t5xxl_max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_sd3.Sd3TokenizeStrategy):
return [tokenize_strategy.clip_l, tokenize_strategy.clip_g, tokenize_strategy.t5xxl]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_sd3.Sd3LatentsCachingStrategy(
args.cache_latents_to_disk, args.vae_batch_size, args.skip_cache_check
)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_sd3.Sd3TextEncodingStrategy(
args.apply_lg_attn_mask,
args.apply_t5_attn_mask,
args.clip_l_dropout_rate,
args.clip_g_dropout_rate,
args.t5_dropout_rate,
)
def post_process_network(self, args, accelerator, network, text_encoders, unet):
# check t5xxl is trained or not
self.train_t5xxl = network.train_t5xxl
if self.train_t5xxl and args.cache_text_encoder_outputs:
raise ValueError(
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません"
)
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
if args.cache_text_encoder_outputs:
if self.train_clip and not self.train_t5xxl:
return text_encoders[0:2] + [None] # only CLIP-L/CLIP-G is needed for encoding because T5XXL is cached
else:
return None # no text encoders are needed for encoding because both are cached
else:
return text_encoders # CLIP-L, CLIP-G and T5XXL are needed for encoding
def get_text_encoders_train_flags(self, args, text_encoders):
return [self.train_clip, self.train_clip, self.train_t5xxl]
def get_text_encoder_outputs_caching_strategy(self, args):
if args.cache_text_encoder_outputs:
# if the text encoders is trained, we need tokenization, so is_partial is True
return strategy_sd3.Sd3TextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk,
args.text_encoder_batch_size,
args.skip_cache_check,
is_partial=self.train_clip or self.train_t5xxl,
apply_lg_attn_mask=args.apply_lg_attn_mask,
apply_t5_attn_mask=args.apply_t5_attn_mask,
)
else:
return None
def cache_text_encoder_outputs_if_needed(
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# メモリ消費を減らす
logger.info("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
clean_memory_on_device(accelerator.device)
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
logger.info("move text encoders to gpu")
text_encoders[0].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[1].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[2].to(accelerator.device) # may be fp8
if text_encoders[2].dtype == torch.float8_e4m3fn:
# if we load fp8 weights, the model is already fp8, so we use it as is
self.prepare_text_encoder_fp8(2, text_encoders[2], text_encoders[2].dtype, weight_dtype)
else:
# otherwise, we need to convert it to target dtype
text_encoders[2].to(weight_dtype)
with accelerator.autocast():
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator)
# cache sample prompts
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
tokenize_strategy: strategy_sd3.Sd3TokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy()
text_encoding_strategy: strategy_sd3.Sd3TextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = []
for line in args.sample_prompts:
line = line.strip()
if len(line) > 0 and line[0] != "#":
prompts.append(line)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
from .library.train_util import line_to_prompt_dict
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy,
text_encoders,
tokens_and_masks,
args.apply_lg_attn_mask,
args.apply_t5_attn_mask,
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
accelerator.wait_for_everyone()
# move back to cpu
if not self.is_train_text_encoder(args):
logger.info("move CLIP-L back to cpu")
text_encoders[0].to("cpu")
logger.info("move CLIP-G back to cpu")
text_encoders[1].to("cpu")
logger.info("move t5XXL back to cpu")
text_encoders[2].to("cpu")
clean_memory_on_device(accelerator.device)
if not args.lowram:
logger.info("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
text_encoders[1].to(accelerator.device, dtype=weight_dtype)
text_encoders[2].to(accelerator.device)
# def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
# noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# # get size embeddings
# orig_size = batch["original_sizes_hw"]
# crop_size = batch["crop_top_lefts"]
# target_size = batch["target_sizes_hw"]
# embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# # concat embeddings
# encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
# vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
# text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
# return noise_pred
def sample_images(self, epoch, global_step, validation_settings):
text_encoders = self.get_models_for_text_encoding(self.args, self.accelerator, self.text_encoder)
image_tensors = sd3_train_utils.sample_images(
self.accelerator, self.args, epoch, global_step, self.unet, self.vae, text_encoders, self.sample_prompts_te_outputs, validation_settings
)
return image_tensors.permute(0, 2, 3, 1)
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
# this scheduler is not used in training, but used to get num_train_timesteps etc.
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.training_shift)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images)
def shift_scale_latents(self, args, latents):
return sd3_models.SDVAE.process_in(latents)
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet: flux_models.Flux,
network,
weight_dtype,
train_unet,
):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = sd3_train_utils.get_noisy_model_input_and_timesteps(
args, latents, noise, accelerator.device, weight_dtype
)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in text_encoder_conds:
if t is not None and t.dtype.is_floating_point:
t.requires_grad_(True)
# Predict the noise residual
lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask = text_encoder_conds
text_encoding_strategy = strategy_base.TextEncodingStrategy.get_strategy()
context, lg_pooled = text_encoding_strategy.concat_encodings(lg_out, t5_out, lg_pooled)
if not args.apply_lg_attn_mask:
l_attn_mask = None
g_attn_mask = None
if not args.apply_t5_attn_mask:
t5_attn_mask = None
# call model
with accelerator.autocast():
# TODO support attention mask
model_pred = unet(noisy_model_input, timesteps, context=context, y=lg_pooled)
# Follow: Section 5 of https://arxiv.org/abs/2206.00364.
# Preconditioning of the model outputs.
model_pred = model_pred * (-sigmas) + noisy_model_input
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
weighting = sd3_train_utils.compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
# flow matching loss
target = latents
# differential output preservation
if "custom_attributes" in batch:
diff_output_pr_indices = []
for i, custom_attributes in enumerate(batch["custom_attributes"]):
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]:
diff_output_pr_indices.append(i)
if len(diff_output_pr_indices) > 0:
network.set_multiplier(0.0)
with torch.no_grad(), accelerator.autocast():
model_pred_prior = unet(
noisy_model_input[diff_output_pr_indices],
timesteps[diff_output_pr_indices],
context=context[diff_output_pr_indices],
y=lg_pooled[diff_output_pr_indices],
)
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step
model_pred_prior = model_pred_prior * (-sigmas[diff_output_pr_indices]) + noisy_model_input[diff_output_pr_indices]
# weighting for differential output preservation is not needed because it is already applied
target[diff_output_pr_indices] = model_pred_prior.to(target.dtype)
return model_pred, target, timesteps, weighting
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, False, True, False, sd3=self.model_type)
def update_metadata(self, metadata, args):
metadata["ss_apply_lg_attn_mask"] = args.apply_lg_attn_mask
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask
metadata["ss_weighting_scheme"] = args.weighting_scheme
metadata["ss_logit_mean"] = args.logit_mean
metadata["ss_logit_std"] = args.logit_std
metadata["ss_mode_scale"] = args.mode_scale
def is_text_encoder_not_needed_for_training(self, args):
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args)
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
if index == 0 or index == 1: # CLIP-L/CLIP-G
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder)
else: # T5XXL
text_encoder.encoder.embed_tokens.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
if index == 0 or index == 1: # CLIP-L/CLIP-G
clip_type = "CLIP-L" if index == 0 else "CLIP-G"
logger.info(f"prepare CLIP-{clip_type} for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}")
text_encoder.to(te_weight_dtype) # fp8
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
else: # T5XXL
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype:
logger.info(f"T5XXL already prepared for fp8")
else:
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks")
text_encoder.to(te_weight_dtype) # fp8
prepare_fp8(text_encoder, weight_dtype)
def on_step_start(self, args, accelerator, network, text_encoders, unet, batch, weight_dtype):
# drop cached text encoder outputs
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None)
if text_encoder_outputs_list is not None:
text_encodoing_strategy: strategy_sd3.Sd3TextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
text_encoder_outputs_list = text_encodoing_strategy.drop_cached_text_encoder_outputs(*text_encoder_outputs_list)
batch["text_encoder_outputs_list"] = text_encoder_outputs_list
def prepare_unet_with_accelerator(
self, args: argparse.Namespace, accelerator: Accelerator, unet: torch.nn.Module
) -> torch.nn.Module:
if not self.is_swapping_blocks:
return super().prepare_unet_with_accelerator(args, accelerator, unet)
# if we doesn't swap blocks, we can move the model to device
mmdit: sd3_models.MMDiT = unet
mmdit = accelerator.prepare(mmdit, device_placement=[not self.is_swapping_blocks])
accelerator.unwrap_model(mmdit).move_to_device_except_swap_blocks(accelerator.device) # reduce peak memory usage
accelerator.unwrap_model(mmdit).prepare_block_swap_before_forward()
return mmdit
def setup_parser() -> argparse.ArgumentParser:
parser = train_network.setup_parser()
train_util.add_dit_training_arguments(parser)
sd3_train_utils.add_sd3_training_arguments(parser)
return parser
|