|
|
|
|
|
|
|
from dataclasses import dataclass |
|
import math |
|
from typing import Dict, List, Optional, Union |
|
|
|
from .device_utils import init_ipex |
|
from .custom_offloading_utils import ModelOffloader |
|
init_ipex() |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import Tensor, nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class FluxParams: |
|
in_channels: int |
|
vec_in_dim: int |
|
context_in_dim: int |
|
hidden_size: int |
|
mlp_ratio: float |
|
num_heads: int |
|
depth: int |
|
depth_single_blocks: int |
|
axes_dim: list[int] |
|
theta: int |
|
qkv_bias: bool |
|
guidance_embed: bool |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class AutoEncoderParams: |
|
resolution: int |
|
in_channels: int |
|
ch: int |
|
out_ch: int |
|
ch_mult: list[int] |
|
num_res_blocks: int |
|
z_channels: int |
|
scale_factor: float |
|
shift_factor: float |
|
|
|
|
|
def swish(x: Tensor) -> Tensor: |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) |
|
|
|
def attention(self, h_: Tensor) -> Tensor: |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() |
|
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() |
|
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() |
|
h_ = nn.functional.scaled_dot_product_attention(q, k, v) |
|
|
|
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return x + self.proj_out(self.attention(x)) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, in_channels: int, out_channels: int): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
|
|
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
if self.in_channels != self.out_channels: |
|
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
h = x |
|
h = self.norm1(h) |
|
h = swish(h) |
|
h = self.conv1(h) |
|
|
|
h = self.norm2(h) |
|
h = swish(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
|
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) |
|
|
|
def forward(self, x: Tensor): |
|
pad = (0, 1, 0, 1) |
|
x = nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels: int): |
|
super().__init__() |
|
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x: Tensor): |
|
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
resolution: int, |
|
in_channels: int, |
|
ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
block_in = self.ch |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) |
|
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1]) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
ch: int, |
|
out_ch: int, |
|
ch_mult: list[int], |
|
num_res_blocks: int, |
|
in_channels: int, |
|
resolution: int, |
|
z_channels: int, |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.ffactor = 2 ** (self.num_resolutions - 1) |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
self.mid.attn_1 = AttnBlock(block_in) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for _ in range(self.num_res_blocks + 1): |
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) |
|
block_in = block_out |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) |
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, z: Tensor) -> Tensor: |
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = swish(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class DiagonalGaussian(nn.Module): |
|
def __init__(self, sample: bool = True, chunk_dim: int = 1): |
|
super().__init__() |
|
self.sample = sample |
|
self.chunk_dim = chunk_dim |
|
|
|
def forward(self, z: Tensor) -> Tensor: |
|
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim) |
|
if self.sample: |
|
std = torch.exp(0.5 * logvar) |
|
return mean + std * torch.randn_like(mean) |
|
else: |
|
return mean |
|
|
|
|
|
class AutoEncoder(nn.Module): |
|
def __init__(self, params: AutoEncoderParams): |
|
super().__init__() |
|
self.encoder = Encoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
self.decoder = Decoder( |
|
resolution=params.resolution, |
|
in_channels=params.in_channels, |
|
ch=params.ch, |
|
out_ch=params.out_ch, |
|
ch_mult=params.ch_mult, |
|
num_res_blocks=params.num_res_blocks, |
|
z_channels=params.z_channels, |
|
) |
|
self.reg = DiagonalGaussian() |
|
|
|
self.scale_factor = params.scale_factor |
|
self.shift_factor = params.shift_factor |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
return next(self.parameters()).dtype |
|
|
|
def encode(self, x: Tensor) -> Tensor: |
|
z = self.reg(self.encoder(x)) |
|
z = self.scale_factor * (z - self.shift_factor) |
|
return z |
|
|
|
def decode(self, z: Tensor) -> Tensor: |
|
z = z / self.scale_factor + self.shift_factor |
|
return self.decoder(z) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.decode(self.encode(x)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ModelSpec: |
|
params: FluxParams |
|
ae_params: AutoEncoderParams |
|
ckpt_path: str | None |
|
ae_path: str | None |
|
|
|
|
|
|
|
|
|
|
|
configs = { |
|
"dev": ModelSpec( |
|
|
|
|
|
|
|
ckpt_path=None, |
|
params=FluxParams( |
|
in_channels=64, |
|
vec_in_dim=768, |
|
context_in_dim=4096, |
|
hidden_size=3072, |
|
mlp_ratio=4.0, |
|
num_heads=24, |
|
depth=19, |
|
depth_single_blocks=38, |
|
axes_dim=[16, 56, 56], |
|
theta=10_000, |
|
qkv_bias=True, |
|
guidance_embed=True, |
|
), |
|
ae_path=None, |
|
ae_params=AutoEncoderParams( |
|
resolution=256, |
|
in_channels=3, |
|
ch=128, |
|
out_ch=3, |
|
ch_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
z_channels=16, |
|
scale_factor=0.3611, |
|
shift_factor=0.1159, |
|
), |
|
), |
|
"schnell": ModelSpec( |
|
|
|
|
|
|
|
ckpt_path=None, |
|
params=FluxParams( |
|
in_channels=64, |
|
vec_in_dim=768, |
|
context_in_dim=4096, |
|
hidden_size=3072, |
|
mlp_ratio=4.0, |
|
num_heads=24, |
|
depth=19, |
|
depth_single_blocks=38, |
|
axes_dim=[16, 56, 56], |
|
theta=10_000, |
|
qkv_bias=True, |
|
guidance_embed=False, |
|
), |
|
ae_path=None, |
|
ae_params=AutoEncoderParams( |
|
resolution=256, |
|
in_channels=3, |
|
ch=128, |
|
out_ch=3, |
|
ch_mult=[1, 2, 4, 4], |
|
num_res_blocks=2, |
|
z_channels=16, |
|
scale_factor=0.3611, |
|
shift_factor=0.1159, |
|
), |
|
), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Optional[Tensor] = None) -> Tensor: |
|
q, k = apply_rope(q, k, pe) |
|
|
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) |
|
x = rearrange(x, "B H L D -> B L (H D)") |
|
|
|
return x |
|
|
|
|
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: |
|
assert dim % 2 == 0 |
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim |
|
omega = 1.0 / (theta**scale) |
|
out = torch.einsum("...n,d->...nd", pos, omega) |
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) |
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) |
|
return out.float() |
|
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: |
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) |
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) |
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] |
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] |
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_cuda(x): |
|
if isinstance(x, torch.Tensor): |
|
return x.cuda() |
|
elif isinstance(x, (list, tuple)): |
|
return [to_cuda(elem) for elem in x] |
|
elif isinstance(x, dict): |
|
return {k: to_cuda(v) for k, v in x.items()} |
|
else: |
|
return x |
|
|
|
|
|
def to_cpu(x): |
|
if isinstance(x, torch.Tensor): |
|
return x.cpu() |
|
elif isinstance(x, (list, tuple)): |
|
return [to_cpu(elem) for elem in x] |
|
elif isinstance(x, dict): |
|
return {k: to_cpu(v) for k, v in x.items()} |
|
else: |
|
return x |
|
|
|
|
|
class EmbedND(nn.Module): |
|
def __init__(self, dim: int, theta: int, axes_dim: list[int]): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: Tensor) -> Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
|
|
return emb.unsqueeze(1) |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
if torch.is_floating_point(t): |
|
embedding = embedding.to(t) |
|
return embedding |
|
|
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int): |
|
super().__init__() |
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) |
|
self.silu = nn.SiLU() |
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
|
|
def _forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
def forward(self, *args, **kwargs): |
|
if self.training and self.gradient_checkpointing: |
|
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs) |
|
else: |
|
return self._forward(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: Tensor): |
|
x_dtype = x.dtype |
|
x = x.float() |
|
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) |
|
|
|
return ((x * rrms) * self.scale.float()).to(dtype=x_dtype) |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim) |
|
self.key_norm = RMSNorm(dim) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q.to(v), k.to(v) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
|
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor: |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class ModulationOut: |
|
shift: Tensor |
|
scale: Tensor |
|
gate: Tensor |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) |
|
|
|
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: |
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): |
|
super().__init__() |
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
|
|
def enable_gradient_checkpointing(self, cpu_offload: bool = False): |
|
self.gradient_checkpointing = True |
|
self.cpu_offload_checkpointing = cpu_offload |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
|
|
def _forward( |
|
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None |
|
) -> tuple[Tensor, Tensor]: |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
|
|
q = torch.cat((txt_q, img_q), dim=2) |
|
k = torch.cat((txt_k, img_k), dim=2) |
|
v = torch.cat((txt_v, img_v), dim=2) |
|
|
|
|
|
attn_mask = None |
|
if txt_attention_mask is not None: |
|
|
|
attn_mask = txt_attention_mask.to(torch.bool) |
|
attn_mask = torch.cat( |
|
(attn_mask, torch.ones(attn_mask.shape[0], img.shape[1], device=attn_mask.device, dtype=torch.bool)), dim=1 |
|
) |
|
|
|
|
|
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1) |
|
|
|
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask) |
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] |
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
return img, txt |
|
|
|
def forward( |
|
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None |
|
) -> tuple[Tensor, Tensor]: |
|
if self.training and self.gradient_checkpointing: |
|
if not self.cpu_offload_checkpointing: |
|
return checkpoint(self._forward, img, txt, vec, pe, txt_attention_mask, use_reentrant=False) |
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
cuda_inputs = to_cuda(inputs) |
|
outputs = func(*cuda_inputs) |
|
return to_cpu(outputs) |
|
|
|
return custom_forward |
|
|
|
return torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self._forward), img, txt, vec, pe, txt_attention_mask, use_reentrant=False |
|
) |
|
|
|
else: |
|
return self._forward(img, txt, vec, pe, txt_attention_mask) |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float | None = None, |
|
): |
|
super().__init__() |
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.norm = QKNorm(head_dim) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False) |
|
|
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
|
|
def enable_gradient_checkpointing(self, cpu_offload: bool = False): |
|
self.gradient_checkpointing = True |
|
self.cpu_offload_checkpointing = cpu_offload |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
|
|
def _forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor: |
|
mod, _ = self.modulation(vec) |
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
|
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
|
|
|
|
attn_mask = None |
|
if txt_attention_mask is not None: |
|
|
|
attn_mask = txt_attention_mask.to(torch.bool) |
|
attn_mask = torch.cat( |
|
( |
|
attn_mask, |
|
torch.ones( |
|
attn_mask.shape[0], x.shape[1] - txt_attention_mask.shape[1], device=attn_mask.device, dtype=torch.bool |
|
), |
|
), |
|
dim=1, |
|
) |
|
|
|
|
|
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1) |
|
|
|
|
|
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask) |
|
|
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) |
|
return x + mod.gate * output |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor: |
|
if self.training and self.gradient_checkpointing: |
|
if not self.cpu_offload_checkpointing: |
|
return checkpoint(self._forward, x, vec, pe, txt_attention_mask, use_reentrant=False) |
|
|
|
|
|
|
|
def create_custom_forward(func): |
|
def custom_forward(*inputs): |
|
cuda_inputs = to_cuda(inputs) |
|
outputs = func(*cuda_inputs) |
|
return to_cpu(outputs) |
|
|
|
return custom_forward |
|
|
|
return torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self._forward), x, vec, pe, txt_attention_mask, use_reentrant=False |
|
) |
|
else: |
|
return self._forward(x, vec, pe, txt_attention_mask) |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
|
|
def __init__(self, params: FluxParams): |
|
super().__init__() |
|
|
|
self.params = params |
|
self.in_channels = params.in_channels |
|
self.out_channels = self.in_channels |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}") |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) |
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) |
|
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() |
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias, |
|
) |
|
for _ in range(params.depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) |
|
for _ in range(params.depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
self.blocks_to_swap = None |
|
|
|
self.offloader_double = None |
|
self.offloader_single = None |
|
self.num_double_blocks = len(self.double_blocks) |
|
self.num_single_blocks = len(self.single_blocks) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|
|
def enable_gradient_checkpointing(self, cpu_offload: bool = False): |
|
self.gradient_checkpointing = True |
|
self.cpu_offload_checkpointing = cpu_offload |
|
|
|
self.time_in.enable_gradient_checkpointing() |
|
self.vector_in.enable_gradient_checkpointing() |
|
if self.guidance_in.__class__ != nn.Identity: |
|
self.guidance_in.enable_gradient_checkpointing() |
|
|
|
for block in self.double_blocks + self.single_blocks: |
|
block.enable_gradient_checkpointing(cpu_offload=cpu_offload) |
|
|
|
print(f"FLUX: Gradient checkpointing enabled. CPU offload: {cpu_offload}") |
|
|
|
def disable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = False |
|
self.cpu_offload_checkpointing = False |
|
|
|
self.time_in.disable_gradient_checkpointing() |
|
self.vector_in.disable_gradient_checkpointing() |
|
if self.guidance_in.__class__ != nn.Identity: |
|
self.guidance_in.disable_gradient_checkpointing() |
|
|
|
for block in self.double_blocks + self.single_blocks: |
|
block.disable_gradient_checkpointing() |
|
|
|
print("FLUX: Gradient checkpointing disabled.") |
|
|
|
def enable_block_swap(self, num_blocks: int, device: torch.device): |
|
self.blocks_to_swap = num_blocks |
|
double_blocks_to_swap = num_blocks // 2 |
|
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 |
|
|
|
assert double_blocks_to_swap <= self.num_double_blocks - 2 and single_blocks_to_swap <= self.num_single_blocks - 2, ( |
|
f"Cannot swap more than {self.num_double_blocks - 2} double blocks and {self.num_single_blocks - 2} single blocks. " |
|
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks." |
|
) |
|
|
|
self.offloader_double = ModelOffloader( |
|
self.double_blocks, self.num_double_blocks, double_blocks_to_swap, device |
|
) |
|
self.offloader_single = ModelOffloader( |
|
self.single_blocks, self.num_single_blocks, single_blocks_to_swap, device |
|
) |
|
print( |
|
f"FLUX: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}." |
|
) |
|
|
|
def move_to_device_except_swap_blocks(self, device: torch.device): |
|
|
|
if self.blocks_to_swap: |
|
save_double_blocks = self.double_blocks |
|
save_single_blocks = self.single_blocks |
|
self.double_blocks = None |
|
self.single_blocks = None |
|
|
|
self.to(device) |
|
|
|
if self.blocks_to_swap: |
|
self.double_blocks = save_double_blocks |
|
self.single_blocks = save_single_blocks |
|
|
|
def prepare_block_swap_before_forward(self): |
|
if self.blocks_to_swap is None or self.blocks_to_swap == 0: |
|
return |
|
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks) |
|
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
guidance: Tensor | None = None, |
|
txt_attention_mask: Tensor | None = None, |
|
) -> Tensor: |
|
if img.ndim != 3 or txt.ndim != 3: |
|
raise ValueError("Input img and txt tensors must have 3 dimensions.") |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
if not self.blocks_to_swap: |
|
for block in self.double_blocks: |
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) |
|
img = torch.cat((txt, img), 1) |
|
for block in self.single_blocks: |
|
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) |
|
else: |
|
for block_idx, block in enumerate(self.double_blocks): |
|
self.offloader_double.wait_for_block(block_idx) |
|
|
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) |
|
|
|
self.offloader_double.submit_move_blocks(self.double_blocks, block_idx) |
|
|
|
img = torch.cat((txt, img), 1) |
|
|
|
for block_idx, block in enumerate(self.single_blocks): |
|
self.offloader_single.wait_for_block(block_idx) |
|
|
|
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) |
|
|
|
self.offloader_single.submit_move_blocks(self.single_blocks, block_idx) |
|
|
|
img = img[:, txt.shape[1] :, ...] |
|
|
|
if self.training and self.cpu_offload_checkpointing: |
|
img = img.to(self.device) |
|
vec = vec.to(self.device) |
|
|
|
img = self.final_layer(img, vec) |
|
|
|
return img |
|
|