|
import os |
|
import glob |
|
from typing import Any, List, Optional, Tuple, Union |
|
import torch |
|
import numpy as np |
|
from transformers import CLIPTokenizer, T5TokenizerFast |
|
|
|
from . import train_util |
|
from .flux_utils import get_t5xxl_actual_dtype |
|
from .strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy |
|
|
|
from .utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14" |
|
T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl" |
|
|
|
|
|
class FluxTokenizeStrategy(TokenizeStrategy): |
|
def __init__(self, t5xxl_max_length: int = 512, tokenizer_cache_dir: Optional[str] = None) -> None: |
|
self.t5xxl_max_length = t5xxl_max_length |
|
self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) |
|
self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir) |
|
|
|
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]: |
|
text = [text] if isinstance(text, str) else text |
|
|
|
l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt") |
|
t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt") |
|
|
|
t5_attn_mask = t5_tokens["attention_mask"] |
|
l_tokens = l_tokens["input_ids"] |
|
t5_tokens = t5_tokens["input_ids"] |
|
|
|
return [l_tokens, t5_tokens, t5_attn_mask] |
|
|
|
|
|
class FluxTextEncodingStrategy(TextEncodingStrategy): |
|
def __init__(self, apply_t5_attn_mask: Optional[bool] = None) -> None: |
|
""" |
|
Args: |
|
apply_t5_attn_mask: Default value for apply_t5_attn_mask. |
|
""" |
|
self.apply_t5_attn_mask = apply_t5_attn_mask |
|
|
|
def encode_tokens( |
|
self, |
|
tokenize_strategy: TokenizeStrategy, |
|
models: List[Any], |
|
tokens: List[torch.Tensor], |
|
apply_t5_attn_mask: Optional[bool] = None, |
|
) -> List[torch.Tensor]: |
|
|
|
|
|
if apply_t5_attn_mask is None: |
|
apply_t5_attn_mask = self.apply_t5_attn_mask |
|
|
|
clip_l, t5xxl = models if len(models) == 2 else (models[0], None) |
|
l_tokens, t5_tokens = tokens[:2] |
|
t5_attn_mask = tokens[2] if len(tokens) > 2 else None |
|
|
|
|
|
if clip_l is not None and l_tokens is not None: |
|
l_pooled = clip_l(l_tokens.to(clip_l.device))["pooler_output"] |
|
else: |
|
l_pooled = None |
|
|
|
|
|
if t5xxl is not None and t5_tokens is not None: |
|
|
|
attention_mask = None if not apply_t5_attn_mask else t5_attn_mask.to(t5xxl.device) |
|
t5_out, _ = t5xxl(t5_tokens.to(t5xxl.device), attention_mask, return_dict=False, output_hidden_states=True) |
|
|
|
|
|
txt_ids = torch.zeros(t5_out.shape[0], t5_out.shape[1], 3, device=t5_out.device) |
|
else: |
|
t5_out = None |
|
txt_ids = None |
|
t5_attn_mask = None |
|
|
|
return [l_pooled, t5_out, txt_ids, t5_attn_mask] |
|
|
|
|
|
class FluxTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy): |
|
FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_flux_te.npz" |
|
|
|
def __init__( |
|
self, |
|
cache_to_disk: bool, |
|
batch_size: int, |
|
skip_disk_cache_validity_check: bool, |
|
is_partial: bool = False, |
|
apply_t5_attn_mask: bool = False, |
|
) -> None: |
|
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial) |
|
self.apply_t5_attn_mask = apply_t5_attn_mask |
|
|
|
self.warn_fp8_weights = False |
|
|
|
def get_outputs_npz_path(self, image_abs_path: str) -> str: |
|
return os.path.splitext(image_abs_path)[0] + FluxTextEncoderOutputsCachingStrategy.FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX |
|
|
|
def is_disk_cached_outputs_expected(self, npz_path: str): |
|
if not self.cache_to_disk: |
|
return False |
|
if not os.path.exists(npz_path): |
|
return False |
|
if self.skip_disk_cache_validity_check: |
|
return True |
|
|
|
try: |
|
npz = np.load(npz_path) |
|
if "l_pooled" not in npz: |
|
return False |
|
if "t5_out" not in npz: |
|
return False |
|
if "txt_ids" not in npz: |
|
return False |
|
if "t5_attn_mask" not in npz: |
|
return False |
|
if "apply_t5_attn_mask" not in npz: |
|
return False |
|
npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"] |
|
if npz_apply_t5_attn_mask != self.apply_t5_attn_mask: |
|
return False |
|
except Exception as e: |
|
logger.error(f"Error loading file: {npz_path}") |
|
raise e |
|
|
|
return True |
|
|
|
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]: |
|
data = np.load(npz_path) |
|
l_pooled = data["l_pooled"] |
|
t5_out = data["t5_out"] |
|
txt_ids = data["txt_ids"] |
|
t5_attn_mask = data["t5_attn_mask"] |
|
|
|
return [l_pooled, t5_out, txt_ids, t5_attn_mask] |
|
|
|
def cache_batch_outputs( |
|
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List |
|
): |
|
if not self.warn_fp8_weights: |
|
if get_t5xxl_actual_dtype(models[1]) == torch.float8_e4m3fn: |
|
logger.warning( |
|
"T5 model is using fp8 weights for caching. This may affect the quality of the cached outputs." |
|
) |
|
self.warn_fp8_weights = True |
|
|
|
flux_text_encoding_strategy: FluxTextEncodingStrategy = text_encoding_strategy |
|
captions = [info.caption for info in infos] |
|
|
|
tokens_and_masks = tokenize_strategy.tokenize(captions) |
|
with torch.no_grad(): |
|
|
|
l_pooled, t5_out, txt_ids, _ = flux_text_encoding_strategy.encode_tokens(tokenize_strategy, models, tokens_and_masks) |
|
|
|
if l_pooled.dtype == torch.bfloat16: |
|
l_pooled = l_pooled.float() |
|
if t5_out.dtype == torch.bfloat16: |
|
t5_out = t5_out.float() |
|
if txt_ids.dtype == torch.bfloat16: |
|
txt_ids = txt_ids.float() |
|
|
|
l_pooled = l_pooled.cpu().numpy() |
|
t5_out = t5_out.cpu().numpy() |
|
txt_ids = txt_ids.cpu().numpy() |
|
t5_attn_mask = tokens_and_masks[2].cpu().numpy() |
|
|
|
for i, info in enumerate(infos): |
|
l_pooled_i = l_pooled[i] |
|
t5_out_i = t5_out[i] |
|
txt_ids_i = txt_ids[i] |
|
t5_attn_mask_i = t5_attn_mask[i] |
|
apply_t5_attn_mask_i = self.apply_t5_attn_mask |
|
|
|
if self.cache_to_disk: |
|
np.savez( |
|
info.text_encoder_outputs_npz, |
|
l_pooled=l_pooled_i, |
|
t5_out=t5_out_i, |
|
txt_ids=txt_ids_i, |
|
t5_attn_mask=t5_attn_mask_i, |
|
apply_t5_attn_mask=apply_t5_attn_mask_i, |
|
) |
|
else: |
|
info.text_encoder_outputs = (l_pooled_i, t5_out_i, txt_ids_i, t5_attn_mask_i) |
|
|
|
|
|
class FluxLatentsCachingStrategy(LatentsCachingStrategy): |
|
FLUX_LATENTS_NPZ_SUFFIX = "_flux.npz" |
|
|
|
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None: |
|
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check) |
|
|
|
@property |
|
def cache_suffix(self) -> str: |
|
return FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX |
|
|
|
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str: |
|
return ( |
|
os.path.splitext(absolute_path)[0] |
|
+ f"_{image_size[0]:04d}x{image_size[1]:04d}" |
|
+ FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX |
|
) |
|
|
|
def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool): |
|
return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True) |
|
|
|
def load_latents_from_disk( |
|
self, npz_path: str, bucket_reso: Tuple[int, int] |
|
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]: |
|
return self._default_load_latents_from_disk(8, npz_path, bucket_reso) |
|
|
|
|
|
def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool): |
|
encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu") |
|
vae_device = vae.device |
|
vae_dtype = vae.dtype |
|
|
|
self._default_cache_batch_latents( |
|
encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True |
|
) |
|
|
|
if not train_util.HIGH_VRAM: |
|
train_util.clean_memory_on_device(vae.device) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
strategy = FluxTokenizeStrategy(256) |
|
text = "hello world" |
|
|
|
l_tokens, g_tokens, t5_tokens = strategy.tokenize(text) |
|
|
|
print(l_tokens) |
|
print(g_tokens) |
|
print(t5_tokens) |
|
|
|
texts = ["hello world", "the quick brown fox jumps over the lazy dog"] |
|
l_tokens_2 = strategy.clip_l(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt") |
|
g_tokens_2 = strategy.clip_g(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt") |
|
t5_tokens_2 = strategy.t5xxl( |
|
texts, max_length=strategy.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
print(l_tokens_2) |
|
print(g_tokens_2) |
|
print(t5_tokens_2) |
|
|
|
|
|
print(torch.allclose(l_tokens, l_tokens_2["input_ids"][0])) |
|
print(torch.allclose(g_tokens, g_tokens_2["input_ids"][0])) |
|
print(torch.allclose(t5_tokens, t5_tokens_2["input_ids"][0])) |
|
|
|
text = ",".join(["hello world! this is long text"] * 50) |
|
l_tokens, g_tokens, t5_tokens = strategy.tokenize(text) |
|
print(l_tokens) |
|
print(g_tokens) |
|
print(t5_tokens) |
|
|
|
print(f"model max length l: {strategy.clip_l.model_max_length}") |
|
print(f"model max length g: {strategy.clip_g.model_max_length}") |
|
print(f"model max length t5: {strategy.t5xxl.model_max_length}") |