ml_test / lycoris /wrapper.py
tonyshark's picture
Upload 132 files
cc69848 verified
# General LyCORIS wrapper based on kohya-ss/sd-scripts' style
import os
import fnmatch
import re
import logging
from typing import Any, List
import torch
import torch.nn as nn
from .modules.locon import LoConModule
from .modules.loha import LohaModule
from .modules.lokr import LokrModule
from .modules.dylora import DyLoraModule
from .modules.glora import GLoRAModule
from .modules.norms import NormModule
from .modules.full import FullModule
from .modules.diag_oft import DiagOFTModule
from .modules.boft import ButterflyOFTModule
from .modules import get_module, make_module
from .config import PRESET
from .utils.preset import read_preset
from .utils import str_bool
from .logging import logger
VALID_PRESET_KEYS = [
"enable_conv",
"target_module",
"target_name",
"module_algo_map",
"name_algo_map",
"lora_prefix",
"use_fnmatch",
"unet_target_module",
"unet_target_name",
"text_encoder_target_module",
"text_encoder_target_name",
"exclude_name",
]
network_module_dict = {
"lora": LoConModule,
"locon": LoConModule,
"loha": LohaModule,
"lokr": LokrModule,
"dylora": DyLoraModule,
"glora": GLoRAModule,
"full": FullModule,
"diag-oft": DiagOFTModule,
"boft": ButterflyOFTModule,
}
deprecated_arg_dict = {
"disable_conv_cp": "use_tucker",
"use_cp": "use_tucker",
"use_conv_cp": "use_tucker",
"constrain": "constraint",
}
def create_lycoris(module, multiplier=1.0, linear_dim=4, linear_alpha=1, **kwargs):
for key, value in list(kwargs.items()):
if key in deprecated_arg_dict:
logger.warning(
f"{key} is deprecated. Please use {deprecated_arg_dict[key]} instead.",
stacklevel=2,
)
kwargs[deprecated_arg_dict[key]] = value
if linear_dim is None:
linear_dim = 4 # default
conv_dim = int(kwargs.get("conv_dim", linear_dim) or linear_dim)
conv_alpha = float(kwargs.get("conv_alpha", linear_alpha) or linear_alpha)
dropout = float(kwargs.get("dropout", 0.0) or 0.0)
rank_dropout = float(kwargs.get("rank_dropout", 0.0) or 0.0)
module_dropout = float(kwargs.get("module_dropout", 0.0) or 0.0)
algo = (kwargs.get("algo", "lora") or "lora").lower()
use_tucker = str_bool(
not kwargs.get("disable_conv_cp", True)
or kwargs.get("use_conv_cp", False)
or kwargs.get("use_cp", False)
or kwargs.get("use_tucker", False)
)
use_scalar = str_bool(kwargs.get("use_scalar", False))
block_size = int(kwargs.get("block_size", 4) or 4)
train_norm = str_bool(kwargs.get("train_norm", False))
constraint = float(kwargs.get("constraint", 0) or 0)
rescaled = str_bool(kwargs.get("rescaled", False))
weight_decompose = str_bool(kwargs.get("dora_wd", False))
wd_on_output = str_bool(kwargs.get("wd_on_output", False))
full_matrix = str_bool(kwargs.get("full_matrix", False))
bypass_mode = str_bool(kwargs.get("bypass_mode", None))
unbalanced_factorization = str_bool(kwargs.get("unbalanced_factorization", False))
if unbalanced_factorization:
logger.info("Unbalanced factorization for LoKr is enabled")
if bypass_mode:
logger.info("Bypass mode is enabled")
if weight_decompose:
logger.info("Weight decomposition is enabled")
if full_matrix:
logger.info("Full matrix mode for LoKr is enabled")
preset = kwargs.get("preset", "full")
if preset not in PRESET:
preset = read_preset(preset)
else:
preset = PRESET[preset]
assert preset is not None
LycorisNetwork.apply_preset(preset)
logger.info(f"Using rank adaptation algo: {algo}")
network = LycorisNetwork(
module,
multiplier=multiplier,
lora_dim=linear_dim,
conv_lora_dim=conv_dim,
alpha=linear_alpha,
conv_alpha=conv_alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
use_tucker=use_tucker,
use_scalar=use_scalar,
network_module=algo,
train_norm=train_norm,
decompose_both=kwargs.get("decompose_both", False),
factor=kwargs.get("factor", -1),
block_size=block_size,
constraint=constraint,
rescaled=rescaled,
weight_decompose=weight_decompose,
wd_on_out=wd_on_output,
full_matrix=full_matrix,
bypass_mode=bypass_mode,
unbalanced_factorization=unbalanced_factorization,
)
return network
def create_lycoris_from_weights(multiplier, file, module, weights_sd=None, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# get dim/alpha mapping
loras = {}
for key in weights_sd:
if "." not in key:
continue
lora_name = key.split(".")[0]
loras[lora_name] = None
for name, modules in module.named_modules():
lora_name = f"{LycorisNetwork.LORA_PREFIX}_{name}".replace(".", "_")
if lora_name in loras:
loras[lora_name] = modules
original_level = logger.level
logger.setLevel(logging.ERROR)
network = LycorisNetwork(module, init_only=True)
network.multiplier = multiplier
network.loras = []
logger.setLevel(original_level)
logger.info("Loading Modules from state dict...")
for lora_name, orig_modules in loras.items():
if orig_modules is None:
continue
lyco_type, params = get_module(weights_sd, lora_name)
module = make_module(lyco_type, params, lora_name, orig_modules)
if module is not None:
network.loras.append(module)
network.algo_table[module.__class__.__name__] = (
network.algo_table.get(module.__class__.__name__, 0) + 1
)
logger.info(f"{len(network.loras)} Modules Loaded")
for lora in network.loras:
lora.multiplier = multiplier
return network, weights_sd
class LycorisNetwork(torch.nn.Module):
ENABLE_CONV = True
TARGET_REPLACE_MODULE = [
"Linear",
"Conv1d",
"Conv2d",
"Conv3d",
"GroupNorm",
"LayerNorm",
]
TARGET_REPLACE_NAME = []
LORA_PREFIX = "lycoris"
MODULE_ALGO_MAP = {}
NAME_ALGO_MAP = {}
USE_FNMATCH = False
TARGET_EXCLUDE_NAME = []
@classmethod
def apply_preset(cls, preset):
for preset_key in preset.keys():
if preset_key not in VALID_PRESET_KEYS:
raise KeyError(
f'Unknown preset key "{preset_key}". Valid keys: {VALID_PRESET_KEYS}'
)
if "enable_conv" in preset:
cls.ENABLE_CONV = preset["enable_conv"]
if "target_module" in preset:
cls.TARGET_REPLACE_MODULE = preset["target_module"]
if "target_name" in preset:
cls.TARGET_REPLACE_NAME = preset["target_name"]
if "module_algo_map" in preset:
cls.MODULE_ALGO_MAP = preset["module_algo_map"]
if "name_algo_map" in preset:
cls.NAME_ALGO_MAP = preset["name_algo_map"]
if "lora_prefix" in preset:
cls.LORA_PREFIX = preset["lora_prefix"]
if "use_fnmatch" in preset:
cls.USE_FNMATCH = preset["use_fnmatch"]
if "exclude_name" in preset:
cls.TARGET_EXCLUDE_NAME = preset["exclude_name"]
return cls
def __init__(
self,
module: nn.Module,
multiplier=1.0,
lora_dim=4,
conv_lora_dim=4,
alpha=1,
conv_alpha=1,
use_tucker=False,
dropout=0,
rank_dropout=0,
module_dropout=0,
network_module: str = "locon",
norm_modules=NormModule,
train_norm=False,
init_only=False,
**kwargs,
) -> None:
super().__init__()
root_kwargs = kwargs
self.weights_sd = None
if init_only:
self.multiplier = 1
self.lora_dim = 0
self.alpha = 1
self.conv_lora_dim = 0
self.conv_alpha = 1
self.dropout = 0
self.rank_dropout = 0
self.module_dropout = 0
self.use_tucker = False
self.loras = []
self.algo_table = {}
return
self.multiplier = multiplier
self.lora_dim = lora_dim
if not self.ENABLE_CONV:
conv_lora_dim = 0
self.conv_lora_dim = int(conv_lora_dim)
if self.conv_lora_dim and self.conv_lora_dim != self.lora_dim:
logger.info("Apply different lora dim for conv layer")
logger.info(f"Conv Dim: {conv_lora_dim}, Linear Dim: {lora_dim}")
elif self.conv_lora_dim == 0:
logger.info("Disable conv layer")
self.alpha = alpha
self.conv_alpha = float(conv_alpha)
if self.conv_lora_dim and self.alpha != self.conv_alpha:
logger.info("Apply different alpha value for conv layer")
logger.info(f"Conv alpha: {conv_alpha}, Linear alpha: {alpha}")
if 1 >= dropout >= 0:
logger.info(f"Use Dropout value: {dropout}")
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.use_tucker = use_tucker
def create_single_module(
lora_name: str,
module: torch.nn.Module,
algo_name,
dim=None,
alpha=None,
use_tucker=self.use_tucker,
**kwargs,
):
for k, v in root_kwargs.items():
if k in kwargs:
continue
kwargs[k] = v
if train_norm and "Norm" in module.__class__.__name__:
return norm_modules(
lora_name,
module,
self.multiplier,
self.rank_dropout,
self.module_dropout,
**kwargs,
)
lora = None
if isinstance(module, torch.nn.Linear) and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif isinstance(
module, (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)
):
k_size, *_ = module.kernel_size
if k_size == 1 and lora_dim > 0:
dim = dim or lora_dim
alpha = alpha or self.alpha
elif conv_lora_dim > 0 or dim:
dim = dim or conv_lora_dim
alpha = alpha or self.conv_alpha
else:
return None
else:
return None
lora = network_module_dict[algo_name](
lora_name,
module,
self.multiplier,
dim,
alpha,
self.dropout,
self.rank_dropout,
self.module_dropout,
use_tucker,
**kwargs,
)
return lora
def create_modules_(
prefix: str,
root_module: torch.nn.Module,
algo,
current_lora_map: dict[str, Any],
configs={},
):
assert current_lora_map is not None, "No mapping supplied"
loras = current_lora_map
lora_names = []
for name, module in root_module.named_modules():
module_name = module.__class__.__name__
if module_name in self.MODULE_ALGO_MAP and module is not root_module:
next_config = self.MODULE_ALGO_MAP[module_name]
next_algo = next_config.get("algo", algo)
new_loras, new_lora_names, new_lora_map = create_modules_(
f"{prefix}_{name}" if name else prefix,
module,
next_algo,
loras,
configs=next_config,
)
loras = {**loras, **new_lora_map}
for lora_name, lora in zip(new_lora_names, new_loras):
if lora_name not in loras and lora_name not in current_lora_map:
loras[lora_name] = lora
if lora_name not in lora_names:
lora_names.append(lora_name)
continue
if name:
lora_name = prefix + "." + name
else:
lora_name = prefix
if f"{self.LORA_PREFIX}_." in lora_name:
lora_name = lora_name.replace(
f"{self.LORA_PREFIX}_.",
f"{self.LORA_PREFIX}.",
)
lora_name = lora_name.replace(".", "_")
if lora_name in loras:
continue
lora = create_single_module(lora_name, module, algo, **configs)
if lora is not None:
loras[lora_name] = lora
lora_names.append(lora_name)
return [loras[lora_name] for lora_name in lora_names], lora_names, loras
# create module instances
def create_modules(
prefix,
root_module: torch.nn.Module,
target_replace_modules,
target_replace_names=[],
target_exclude_names=[],
) -> List:
logger.info("Create LyCORIS Module")
loras = []
lora_map = {}
next_config = {}
for name, module in root_module.named_modules():
if name in target_exclude_names or any(
self.match_fn(t, name) for t in target_exclude_names
):
continue
module_name = module.__class__.__name__
if module_name in target_replace_modules and not any(
self.match_fn(t, name) for t in target_replace_names
):
if module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
lora_lst, _, _lora_map = create_modules_(
f"{prefix}_{name}",
module,
algo,
lora_map,
configs=next_config,
)
lora_map = {**lora_map, **_lora_map}
loras.extend(lora_lst)
next_config = {}
elif name in target_replace_names or any(
self.match_fn(t, name) for t in target_replace_names
):
conf_from_name = self.find_conf_for_name(name)
if conf_from_name is not None:
next_config = conf_from_name
algo = next_config.get("algo", network_module)
elif module_name in self.MODULE_ALGO_MAP:
next_config = self.MODULE_ALGO_MAP[module_name]
algo = next_config.get("algo", network_module)
else:
algo = network_module
lora_name = prefix + "." + name
lora_name = lora_name.replace(".", "_")
if lora_name in lora_map:
continue
lora = create_single_module(lora_name, module, algo, **next_config)
next_config = {}
if lora is not None:
lora_map[lora.lora_name] = lora
loras.append(lora)
return loras
self.loras = create_modules(
LycorisNetwork.LORA_PREFIX,
module,
list(
set(
[
*LycorisNetwork.TARGET_REPLACE_MODULE,
*LycorisNetwork.MODULE_ALGO_MAP.keys(),
]
)
),
list(
set(
[
*LycorisNetwork.TARGET_REPLACE_NAME,
*LycorisNetwork.NAME_ALGO_MAP.keys(),
]
)
),
target_exclude_names=LycorisNetwork.TARGET_EXCLUDE_NAME,
)
logger.info(f"create LyCORIS: {len(self.loras)} modules.")
algo_table = {}
for lora in self.loras:
algo_table[lora.__class__.__name__] = (
algo_table.get(lora.__class__.__name__, 0) + 1
)
logger.info(f"module type table: {algo_table}")
# Assertion to ensure we have not accidentally wrapped some layers
# multiple times.
names = set()
for lora in self.loras:
assert (
lora.lora_name not in names
), f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
def match_fn(self, pattern: str, name: str) -> bool:
if self.USE_FNMATCH:
return fnmatch.fnmatch(name, pattern)
return bool(re.match(pattern, name))
def find_conf_for_name(
self,
name: str,
) -> dict[str, Any]:
if name in self.NAME_ALGO_MAP.keys():
return self.NAME_ALGO_MAP[name]
for key, value in self.NAME_ALGO_MAP.items():
if self.match_fn(key, name):
return value
return None
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for lora in self.loras:
lora.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
self.weights_sd = load_file(file)
else:
self.weights_sd = torch.load(file, map_location="cpu")
missing, unexpected = self.load_state_dict(self.weights_sd, strict=False)
state = {}
if missing:
state["missing keys"] = missing
if unexpected:
state["unexpected keys"] = unexpected
return state
def apply_to(self):
"""
Register to modules to the subclass so that torch sees them.
"""
for lora in self.loras:
lora.apply_to()
self.add_module(lora.lora_name, lora)
if self.weights_sd:
# if some weights are not in state dict, it is ok because initial LoRA does nothing (lora_up is initialized by zeros)
info = self.load_state_dict(self.weights_sd, False)
logger.info(f"weights are loaded: {info}")
def is_mergeable(self):
return True
def restore(self):
for lora in self.loras:
lora.restore()
def merge_to(self, weight=1.0):
for lora in self.loras:
lora.merge_to(weight)
def apply_max_norm_regularization(self, max_norm_value, device):
key_scaled = 0
norms = []
for module in self.loras:
scaled, norm = module.apply_max_norm(max_norm_value, device)
if scaled is None:
continue
norms.append(norm)
key_scaled += scaled
if key_scaled == 0:
return key_scaled, 0, 0
return key_scaled, sum(norms) / len(norms), max(norms)
def enable_gradient_checkpointing(self):
# not supported
def make_ckpt(module):
if isinstance(module, torch.nn.Module):
module.grad_ckpt = True
self.apply(make_ckpt)
pass
def prepare_optimizer_params(self, lr):
def enumerate_params(loras):
params = []
for lora in loras:
params.extend(lora.parameters())
return params
self.requires_grad_(True)
all_params = []
param_data = {"params": enumerate_params(self.loras)}
if lr is not None:
param_data["lr"] = lr
all_params.append(param_data)
return all_params
def prepare_grad_etc(self, *args):
self.requires_grad_(True)
def on_epoch_start(self, *args):
self.train()
def get_trainable_params(self, *args):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)