|
import os |
|
import torch |
|
|
|
import folder_paths |
|
import comfy.model_management as mm |
|
import comfy.utils |
|
import toml |
|
import json |
|
import time |
|
import shutil |
|
import shlex |
|
|
|
script_directory = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
from .sd3_train_network import Sd3NetworkTrainer |
|
from .library import sd3_train_utils as sd3_train_utils |
|
from .library.device_utils import init_ipex |
|
init_ipex() |
|
|
|
from .library import train_util |
|
from .train_network import setup_parser as train_network_setup_parser |
|
|
|
import logging |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
class SD3ModelSelect: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"transformer": (folder_paths.get_filename_list("checkpoints"), ), |
|
"clip_l": (folder_paths.get_filename_list("clip"), ), |
|
"clip_g": (folder_paths.get_filename_list("clip"), ), |
|
"t5": (folder_paths.get_filename_list("clip"), ), |
|
}, |
|
"optional": { |
|
"lora_path": ("STRING",{"multiline": True, "forceInput": True, "default": "", "tooltip": "pre-trained LoRA path to load (network_weights)"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("TRAIN_SD3_MODELS",) |
|
RETURN_NAMES = ("sd3_models",) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "FluxTrainer/SD3" |
|
|
|
def loadmodel(self, transformer, clip_l, clip_g, t5, lora_path=""): |
|
|
|
transformer_path = folder_paths.get_full_path("checkpoints", transformer) |
|
clip_l_path = folder_paths.get_full_path("clip", clip_l) |
|
clip_g_path = folder_paths.get_full_path("clip", clip_g) |
|
t5_path = folder_paths.get_full_path("clip", t5) |
|
|
|
sd3_models = { |
|
"transformer": transformer_path, |
|
"clip_l": clip_l_path, |
|
"clip_g": clip_g_path, |
|
"t5": t5_path, |
|
"lora_path": lora_path |
|
} |
|
|
|
return (sd3_models,) |
|
|
|
class InitSD3LoRATraining: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"sd3_models": ("TRAIN_SD3_MODELS",), |
|
"dataset": ("JSON",), |
|
"optimizer_settings": ("ARGS",), |
|
"output_name": ("STRING", {"default": "sd35_lora", "multiline": False}), |
|
"output_dir": ("STRING", {"default": "sd35_trainer_output", "multiline": False, "tooltip": "path to dataset, root is the 'ComfyUI' folder, with windows portable 'ComfyUI_windows_portable'"}), |
|
"network_dim": ("INT", {"default": 16, "min": 1, "max": 2048, "step": 1, "tooltip": "network dim"}), |
|
"network_alpha": ("FLOAT", {"default": 16, "min": 0.0, "max": 2048.0, "step": 0.01, "tooltip": "network alpha"}), |
|
"learning_rate": ("FLOAT", {"default": 1e-4, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "learning rate"}), |
|
"max_train_steps": ("INT", {"default": 1500, "min": 1, "max": 100000, "step": 1, "tooltip": "max number of training steps"}), |
|
"cache_latents": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}), |
|
"cache_text_encoder_outputs": (["disk", "memory", "disabled"], {"tooltip": "caches text encoder outputs"}), |
|
"training_shift ": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.0001, "tooltip": "shift value for the training distribution of timesteps"}), |
|
"highvram": ("BOOLEAN", {"default": False, "tooltip": "memory mode"}), |
|
"blocks_to_swap": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1, "tooltip": "option for memory use reduction. The maximum number of blocks that can be swapped is 36 for SD3.5L and 22 for SD3.5M"}), |
|
"fp8_base": ("BOOLEAN", {"default": False, "tooltip": "use fp8 for base model"}), |
|
"gradient_dtype": (["fp32", "fp16", "bf16"], {"default": "fp32", "tooltip": "the actual dtype training uses"}), |
|
"save_dtype": (["fp32", "fp16", "bf16", "fp8_e4m3fn", "fp8_e5m2"], {"default": "bf16", "tooltip": "the dtype to save checkpoints as"}), |
|
"attention_mode": (["sdpa", "xformers", "disabled"], {"default": "sdpa", "tooltip": "memory efficient attention mode"}), |
|
"train_text_encoder": (['disabled', 'clip_l', 'clip_l_fp8', 'clip_l+T5', 'clip_l+T5_fp8'], {"default": 'disabled', "tooltip": "also train the selected text encoders using specified dtype, T5 can not be trained without clip_l"}), |
|
"clip_l_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}), |
|
"clip_g_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}), |
|
"T5_lr": ("FLOAT", {"default": 0, "min": 0.0, "max": 10.0, "step": 0.000001, "tooltip": "text encoder learning rate"}), |
|
"sample_prompts": ("STRING", {"multiline": True, "default": "illustration of a kitten | photograph of a turtle", "tooltip": "validation sample prompts, for multiple prompts, separate by `|`"}), |
|
"gradient_checkpointing": (["enabled", "disabled"], {"default": "enabled", "tooltip": "use gradient checkpointing"}), |
|
}, |
|
"optional": { |
|
"additional_args": ("STRING", {"multiline": True, "default": "", "tooltip": "additional args to pass to the training command"}), |
|
"resume_args": ("ARGS", {"default": "", "tooltip": "resume args to pass to the training command"}), |
|
"block_args": ("ARGS", {"default": "", "tooltip": "limit the blocks used in the LoRA"}), |
|
"loss_args": ("ARGS", {"default": "", "tooltip": "loss args"}), |
|
}, |
|
"hidden": { |
|
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO" |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("NETWORKTRAINER", "INT", "KOHYA_ARGS",) |
|
RETURN_NAMES = ("network_trainer", "epochs_count", "args",) |
|
FUNCTION = "init_training" |
|
CATEGORY = "FluxTrainer/SD3" |
|
|
|
def init_training(self, sd3_models, dataset, optimizer_settings, sample_prompts, output_name, attention_mode, |
|
gradient_dtype, save_dtype, additional_args=None, resume_args=None, train_text_encoder='disabled', |
|
block_args=None, gradient_checkpointing="enabled", prompt=None, extra_pnginfo=None, clip_l_lr=0, clip_g_lr=0, T5_lr=0, loss_args=None, **kwargs): |
|
mm.soft_empty_cache() |
|
|
|
output_dir = os.path.abspath(kwargs.get("output_dir")) |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
total, used, free = shutil.disk_usage(output_dir) |
|
|
|
required_free_space = 2 * (2**30) |
|
if free <= required_free_space: |
|
raise ValueError(f"Insufficient disk space. Required: {required_free_space/2**30}GB. Available: {free/2**30}GB") |
|
|
|
dataset_config = dataset["datasets"] |
|
dataset_toml = toml.dumps(json.loads(dataset_config)) |
|
|
|
parser = train_network_setup_parser() |
|
sd3_train_utils.add_sd3_training_arguments(parser) |
|
if additional_args is not None: |
|
print(f"additional_args: {additional_args}") |
|
args, _ = parser.parse_known_args(args=shlex.split(additional_args)) |
|
else: |
|
args, _ = parser.parse_known_args() |
|
|
|
if kwargs.get("cache_latents") == "memory": |
|
kwargs["cache_latents"] = True |
|
kwargs["cache_latents_to_disk"] = False |
|
elif kwargs.get("cache_latents") == "disk": |
|
kwargs["cache_latents"] = True |
|
kwargs["cache_latents_to_disk"] = True |
|
kwargs["caption_dropout_rate"] = 0.0 |
|
kwargs["shuffle_caption"] = False |
|
kwargs["token_warmup_step"] = 0.0 |
|
kwargs["caption_tag_dropout_rate"] = 0.0 |
|
else: |
|
kwargs["cache_latents"] = False |
|
kwargs["cache_latents_to_disk"] = False |
|
|
|
if kwargs.get("cache_text_encoder_outputs") == "memory": |
|
kwargs["cache_text_encoder_outputs"] = True |
|
kwargs["cache_text_encoder_outputs_to_disk"] = False |
|
elif kwargs.get("cache_text_encoder_outputs") == "disk": |
|
kwargs["cache_text_encoder_outputs"] = True |
|
kwargs["cache_text_encoder_outputs_to_disk"] = True |
|
else: |
|
kwargs["cache_text_encoder_outputs"] = False |
|
kwargs["cache_text_encoder_outputs_to_disk"] = False |
|
|
|
if '|' in sample_prompts: |
|
prompts = sample_prompts.split('|') |
|
else: |
|
prompts = [sample_prompts] |
|
|
|
config_dict = { |
|
"sample_prompts": prompts, |
|
"save_precision": save_dtype, |
|
"mixed_precision": "bf16", |
|
"num_cpu_threads_per_process": 1, |
|
"pretrained_model_name_or_path": sd3_models["transformer"], |
|
"clip_l": sd3_models["clip_l"], |
|
"clip_g": sd3_models["clip_g"], |
|
"t5xxl": sd3_models["t5"], |
|
"save_model_as": "safetensors", |
|
"persistent_data_loader_workers": False, |
|
"max_data_loader_n_workers": 0, |
|
"seed": 42, |
|
"network_module": ".networks.lora_sd3", |
|
"dataset_config": dataset_toml, |
|
"output_name": f"{output_name}_rank{kwargs.get('network_dim')}_{save_dtype}", |
|
"loss_type": "l2", |
|
"t5xxl_max_token_length": 512, |
|
"alpha_mask": dataset["alpha_mask"], |
|
"network_train_unet_only": True if train_text_encoder == 'disabled' else False, |
|
"fp8_base_unet": True if "fp8" in train_text_encoder else False, |
|
"disable_mmap_load_safetensors": False, |
|
} |
|
attention_settings = { |
|
"sdpa": {"mem_eff_attn": True, "xformers": False, "spda": True}, |
|
"xformers": {"mem_eff_attn": True, "xformers": True, "spda": False} |
|
} |
|
config_dict.update(attention_settings.get(attention_mode, {})) |
|
|
|
gradient_dtype_settings = { |
|
"fp16": {"full_fp16": True, "full_bf16": False, "mixed_precision": "fp16"}, |
|
"bf16": {"full_bf16": True, "full_fp16": False, "mixed_precision": "bf16"} |
|
} |
|
config_dict.update(gradient_dtype_settings.get(gradient_dtype, {})) |
|
|
|
if train_text_encoder != 'disabled': |
|
config_dict["text_encoder_lr"] = [clip_l_lr, clip_g_lr, T5_lr] |
|
|
|
|
|
additional_network_args = [] |
|
|
|
if "T5" in train_text_encoder: |
|
additional_network_args.append("train_t5xxl=True") |
|
|
|
if block_args: |
|
additional_network_args.append(block_args["include"]) |
|
|
|
|
|
if hasattr(args, 'network_args') and isinstance(args.network_args, list): |
|
args.network_args.extend(additional_network_args) |
|
else: |
|
setattr(args, 'network_args', additional_network_args) |
|
|
|
if gradient_checkpointing == "disabled": |
|
config_dict["gradient_checkpointing"] = False |
|
elif gradient_checkpointing == "enabled_with_cpu_offloading": |
|
config_dict["gradient_checkpointing"] = True |
|
config_dict["cpu_offload_checkpointing"] = True |
|
else: |
|
config_dict["gradient_checkpointing"] = True |
|
|
|
if sd3_models["lora_path"]: |
|
config_dict["network_weights"] = sd3_models["lora_path"] |
|
|
|
config_dict.update(kwargs) |
|
config_dict.update(optimizer_settings) |
|
|
|
if loss_args: |
|
config_dict.update(loss_args) |
|
|
|
if resume_args: |
|
config_dict.update(resume_args) |
|
|
|
for key, value in config_dict.items(): |
|
setattr(args, key, value) |
|
|
|
saved_args_file_path = os.path.join(output_dir, f"{output_name}_args.json") |
|
with open(saved_args_file_path, 'w') as f: |
|
json.dump(vars(args), f, indent=4) |
|
|
|
|
|
metadata = {} |
|
if extra_pnginfo is not None: |
|
metadata.update(extra_pnginfo["workflow"]) |
|
|
|
saved_workflow_file_path = os.path.join(output_dir, f"{output_name}_workflow.json") |
|
with open(saved_workflow_file_path, 'w') as f: |
|
json.dump(metadata, f, indent=4) |
|
|
|
|
|
with torch.inference_mode(False): |
|
network_trainer = Sd3NetworkTrainer() |
|
training_loop = network_trainer.init_train(args) |
|
|
|
epochs_count = network_trainer.num_train_epochs |
|
|
|
trainer = { |
|
"network_trainer": network_trainer, |
|
"training_loop": training_loop, |
|
} |
|
return (trainer, epochs_count, args) |
|
|
|
|
|
class SD3TrainLoop: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"network_trainer": ("NETWORKTRAINER",), |
|
"steps": ("INT", {"default": 1, "min": 1, "max": 10000, "step": 1, "tooltip": "the step point in training to validate/save"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("NETWORKTRAINER", "INT",) |
|
RETURN_NAMES = ("network_trainer", "steps",) |
|
FUNCTION = "train" |
|
CATEGORY = "FluxTrainer" |
|
|
|
def train(self, network_trainer, steps): |
|
with torch.inference_mode(False): |
|
training_loop = network_trainer["training_loop"] |
|
network_trainer = network_trainer["network_trainer"] |
|
initial_global_step = network_trainer.global_step |
|
|
|
target_global_step = network_trainer.global_step + steps |
|
comfy_pbar = comfy.utils.ProgressBar(steps) |
|
network_trainer.comfy_pbar = comfy_pbar |
|
|
|
network_trainer.optimizer_train_fn() |
|
|
|
while network_trainer.global_step < target_global_step: |
|
steps_done = training_loop( |
|
break_at_steps = target_global_step, |
|
epoch = network_trainer.current_epoch.value, |
|
) |
|
|
|
|
|
if network_trainer.global_step >= network_trainer.args.max_train_steps: |
|
break |
|
|
|
trainer = { |
|
"network_trainer": network_trainer, |
|
"training_loop": training_loop, |
|
} |
|
return (trainer, network_trainer.global_step) |
|
|
|
|
|
class SD3TrainLoRASave: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"network_trainer": ("NETWORKTRAINER",), |
|
"save_state": ("BOOLEAN", {"default": False, "tooltip": "save the whole model state as well"}), |
|
"copy_to_comfy_lora_folder": ("BOOLEAN", {"default": False, "tooltip": "copy the lora model to the comfy lora folder"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("NETWORKTRAINER", "STRING", "INT",) |
|
RETURN_NAMES = ("network_trainer","lora_path", "steps",) |
|
FUNCTION = "save" |
|
CATEGORY = "FluxTrainer" |
|
|
|
def save(self, network_trainer, save_state, copy_to_comfy_lora_folder): |
|
import shutil |
|
with torch.inference_mode(False): |
|
trainer = network_trainer["network_trainer"] |
|
global_step = trainer.global_step |
|
|
|
ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, global_step) |
|
trainer.save_model(ckpt_name, trainer.accelerator.unwrap_model(trainer.network), global_step, trainer.current_epoch.value + 1) |
|
|
|
remove_step_no = train_util.get_remove_step_no(trainer.args, global_step) |
|
if remove_step_no is not None: |
|
remove_ckpt_name = train_util.get_step_ckpt_name(trainer.args, "." + trainer.args.save_model_as, remove_step_no) |
|
trainer.remove_model(remove_ckpt_name) |
|
|
|
if save_state: |
|
train_util.save_and_remove_state_stepwise(trainer.args, trainer.accelerator, global_step) |
|
|
|
lora_path = os.path.join(trainer.args.output_dir, ckpt_name) |
|
if copy_to_comfy_lora_folder: |
|
destination_dir = os.path.join(folder_paths.models_dir, "loras", "flux_trainer") |
|
os.makedirs(destination_dir, exist_ok=True) |
|
shutil.copy(lora_path, os.path.join(destination_dir, ckpt_name)) |
|
|
|
|
|
return (network_trainer, lora_path, global_step) |
|
|
|
|
|
|
|
class SD3TrainEnd: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"network_trainer": ("NETWORKTRAINER",), |
|
"save_state": ("BOOLEAN", {"default": True}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING", "STRING", "STRING",) |
|
RETURN_NAMES = ("lora_name", "metadata", "lora_path",) |
|
FUNCTION = "endtrain" |
|
CATEGORY = "FluxTrainer" |
|
OUTPUT_NODE = True |
|
|
|
def endtrain(self, network_trainer, save_state): |
|
with torch.inference_mode(False): |
|
training_loop = network_trainer["training_loop"] |
|
network_trainer = network_trainer["network_trainer"] |
|
|
|
network_trainer.metadata["ss_epoch"] = str(network_trainer.num_train_epochs) |
|
network_trainer.metadata["ss_training_finished_at"] = str(time.time()) |
|
|
|
network = network_trainer.accelerator.unwrap_model(network_trainer.network) |
|
|
|
network_trainer.accelerator.end_training() |
|
network_trainer.optimizer_eval_fn() |
|
|
|
if save_state: |
|
train_util.save_state_on_train_end(network_trainer.args, network_trainer.accelerator) |
|
|
|
ckpt_name = train_util.get_last_ckpt_name(network_trainer.args, "." + network_trainer.args.save_model_as) |
|
network_trainer.save_model(ckpt_name, network, network_trainer.global_step, network_trainer.num_train_epochs, force_sync_upload=True) |
|
logger.info("model saved.") |
|
|
|
final_lora_name = str(network_trainer.args.output_name) |
|
final_lora_path = os.path.join(network_trainer.args.output_dir, ckpt_name) |
|
|
|
|
|
metadata = json.dumps(network_trainer.metadata, indent=2) |
|
|
|
training_loop = None |
|
network_trainer = None |
|
mm.soft_empty_cache() |
|
|
|
return (final_lora_name, metadata, final_lora_path) |
|
|
|
class SD3TrainValidationSettings: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 256, "step": 1, "tooltip": "sampling steps"}), |
|
"width": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "image width"}), |
|
"height": ("INT", {"default": 1024, "min": 64, "max": 4096, "step": 8, "tooltip": "image height"}), |
|
"guidance_scale": ("FLOAT", {"default": 4, "min": 1.0, "max": 32.0, "step": 0.05, "tooltip": "guidance scale"}), |
|
"seed": ("INT", {"default": 42,"min": 0, "max": 0xffffffffffffffff, "step": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("VALSETTINGS", ) |
|
RETURN_NAMES = ("validation_settings", ) |
|
FUNCTION = "set" |
|
CATEGORY = "FluxTrainer" |
|
|
|
def set(self, **kwargs): |
|
validation_settings = kwargs |
|
print(validation_settings) |
|
|
|
return (validation_settings,) |
|
|
|
class SD3TrainValidate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"network_trainer": ("NETWORKTRAINER",), |
|
}, |
|
"optional": { |
|
"validation_settings": ("VALSETTINGS",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("NETWORKTRAINER", "IMAGE",) |
|
RETURN_NAMES = ("network_trainer", "validation_images",) |
|
FUNCTION = "validate" |
|
CATEGORY = "FluxTrainer" |
|
|
|
def validate(self, network_trainer, validation_settings=None): |
|
training_loop = network_trainer["training_loop"] |
|
network_trainer = network_trainer["network_trainer"] |
|
|
|
params = ( |
|
network_trainer.current_epoch.value, |
|
network_trainer.global_step, |
|
validation_settings |
|
) |
|
network_trainer.optimizer_eval_fn() |
|
with torch.inference_mode(False): |
|
image_tensors = network_trainer.sample_images(*params) |
|
|
|
|
|
trainer = { |
|
"network_trainer": network_trainer, |
|
"training_loop": training_loop, |
|
} |
|
return (trainer, (0.5 * (image_tensors + 1.0)).cpu().float(),) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"SD3ModelSelect": SD3ModelSelect, |
|
"InitSD3LoRATraining": InitSD3LoRATraining, |
|
"SD3TrainValidationSettings": SD3TrainValidationSettings, |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"SD3ModelSelect": "SD3 Model Select", |
|
"InitSD3LoRATraining": "Init SD3 LoRA Training", |
|
"SD3TrainValidationSettings": "SD3 Train Validation Settings", |
|
} |
|
|