import argparse import math import os import toml import json import time from typing import Dict, List, Optional, Tuple, Union import torch from safetensors.torch import save_file from accelerate import Accelerator, PartialState from tqdm import tqdm from PIL import Image from transformers import CLIPTextModelWithProjection, T5EncoderModel from . import sd3_models, sd3_utils, strategy_base, train_util from .device_utils import init_ipex, clean_memory_on_device from comfy.utils import ProgressBar init_ipex() # from transformers import CLIPTokenizer # from library import model_util # , sdxl_model_util, train_util, sdxl_original_unet # from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline from .utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) from . import sd3_models, sd3_utils, strategy_base, train_util def save_models( ckpt_path: str, mmdit: Optional[sd3_models.MMDiT], vae: Optional[sd3_models.SDVAE], clip_l: Optional[CLIPTextModelWithProjection], clip_g: Optional[CLIPTextModelWithProjection], t5xxl: Optional[T5EncoderModel], sai_metadata: Optional[dict], save_dtype: Optional[torch.dtype] = None, ): r""" Save models to checkpoint file. Only supports unified checkpoint format. """ state_dict = {} def update_sd(prefix, sd): for k, v in sd.items(): key = prefix + k if save_dtype is not None: v = v.detach().clone().to("cpu").to(save_dtype) state_dict[key] = v update_sd("model.diffusion_model.", mmdit.state_dict()) update_sd("first_stage_model.", vae.state_dict()) # do not support unified checkpoint format for now # if clip_l is not None: # update_sd("text_encoders.clip_l.", clip_l.state_dict()) # if clip_g is not None: # update_sd("text_encoders.clip_g.", clip_g.state_dict()) # if t5xxl is not None: # update_sd("text_encoders.t5xxl.", t5xxl.state_dict()) save_file(state_dict, ckpt_path, metadata=sai_metadata) if clip_l is not None: clip_l_path = ckpt_path.replace(".safetensors", "_clip_l.safetensors") save_file(clip_l.state_dict(), clip_l_path) if clip_g is not None: clip_g_path = ckpt_path.replace(".safetensors", "_clip_g.safetensors") save_file(clip_g.state_dict(), clip_g_path) if t5xxl is not None: t5xxl_path = ckpt_path.replace(".safetensors", "_t5xxl.safetensors") t5xxl_state_dict = t5xxl.state_dict() # replace "shared.weight" with copy of it to avoid annoying shared tensor error on safetensors.save_file shared_weight = t5xxl_state_dict["shared.weight"] shared_weight_copy = shared_weight.detach().clone() t5xxl_state_dict["shared.weight"] = shared_weight_copy save_file(t5xxl_state_dict, t5xxl_path) def save_sd3_model_on_train_end( args: argparse.Namespace, save_dtype: torch.dtype, epoch: int, global_step: int, clip_l: Optional[CLIPTextModelWithProjection], clip_g: Optional[CLIPTextModelWithProjection], t5xxl: Optional[T5EncoderModel], mmdit: sd3_models.MMDiT, vae: sd3_models.SDVAE, ): def sd_saver(ckpt_file, epoch_no, global_step): sai_metadata = train_util.get_sai_model_spec( None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type ) save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype) train_util.save_sd_model_on_train_end_common(args, True, True, epoch, global_step, sd_saver, None) # epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している # on_epoch_end: Trueならepoch終了時、Falseならstep経過時 def save_sd3_model_on_epoch_end_or_stepwise( args: argparse.Namespace, on_epoch_end: bool, accelerator, save_dtype: torch.dtype, epoch: int, num_train_epochs: int, global_step: int, clip_l: Optional[CLIPTextModelWithProjection], clip_g: Optional[CLIPTextModelWithProjection], t5xxl: Optional[T5EncoderModel], mmdit: sd3_models.MMDiT, vae: sd3_models.SDVAE, ): def sd_saver(ckpt_file, epoch_no, global_step): sai_metadata = train_util.get_sai_model_spec( None, args, False, False, False, is_stable_diffusion_ckpt=True, sd3=mmdit.model_type ) save_models(ckpt_file, mmdit, vae, clip_l, clip_g, t5xxl, sai_metadata, save_dtype) train_util.save_sd_model_on_epoch_end_or_stepwise_common( args, on_epoch_end, accelerator, True, True, epoch, num_train_epochs, global_step, sd_saver, None, ) def add_sd3_training_arguments(parser: argparse.ArgumentParser): parser.add_argument( "--clip_l", type=str, required=False, help="CLIP-L model path. if not specified, use ckpt's state_dict / CLIP-Lモデルのパス。指定しない場合はckptのstate_dictを使用", ) parser.add_argument( "--clip_g", type=str, required=False, help="CLIP-G model path. if not specified, use ckpt's state_dict / CLIP-Gモデルのパス。指定しない場合はckptのstate_dictを使用", ) parser.add_argument( "--t5xxl", type=str, required=False, help="T5-XXL model path. if not specified, use ckpt's state_dict / T5-XXLモデルのパス。指定しない場合はckptのstate_dictを使用", ) parser.add_argument( "--save_clip", action="store_true", help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません", ) parser.add_argument( "--save_t5xxl", action="store_true", help="[DOES NOT WORK] unified checkpoint is not supported / 統合チェックポイントはまだサポートされていません", ) parser.add_argument( "--t5xxl_device", type=str, default=None, help="[DOES NOT WORK] not supported yet. T5-XXL device. if not specified, use accelerator's device / T5-XXLデバイス。指定しない場合はacceleratorのデバイスを使用", ) parser.add_argument( "--t5xxl_dtype", type=str, default=None, help="[DOES NOT WORK] not supported yet. T5-XXL dtype. if not specified, use default dtype (from mixed precision) / T5-XXL dtype。指定しない場合はデフォルトのdtype(mixed precisionから)を使用", ) parser.add_argument( "--t5xxl_max_token_length", type=int, default=256, help="maximum token length for T5-XXL. 256 is the default value / T5-XXLの最大トークン長。デフォルトは256", ) parser.add_argument( "--apply_lg_attn_mask", action="store_true", help="apply attention mask (zero embs) to CLIP-L and G / CLIP-LとGにアテンションマスク(ゼロ埋め)を適用する", ) parser.add_argument( "--apply_t5_attn_mask", action="store_true", help="apply attention mask (zero embs) to T5-XXL / T5-XXLにアテンションマスク(ゼロ埋め)を適用する", ) parser.add_argument( "--clip_l_dropout_rate", type=float, default=0.0, help="Dropout rate for CLIP-L encoder, default is 0.0 / CLIP-Lエンコーダのドロップアウト率、デフォルトは0.0", ) parser.add_argument( "--clip_g_dropout_rate", type=float, default=0.0, help="Dropout rate for CLIP-G encoder, default is 0.0 / CLIP-Gエンコーダのドロップアウト率、デフォルトは0.0", ) parser.add_argument( "--t5_dropout_rate", type=float, default=0.0, help="Dropout rate for T5 encoder, default is 0.0 / T5エンコーダのドロップアウト率、デフォルトは0.0", ) parser.add_argument( "--pos_emb_random_crop_rate", type=float, default=0.0, help="Random crop rate for positional embeddings, default is 0.0. Only for SD3.5M" " / 位置埋め込みのランダムクロップ率、デフォルトは0.0。SD3.5M以外では予期しない動作になります", ) parser.add_argument( "--enable_scaled_pos_embed", action="store_true", help="Scale position embeddings for each resolution during multi-resolution training. Only for SD3.5M" " / 複数解像度学習時に解像度ごとに位置埋め込みをスケーリングする。SD3.5M以外では予期しない動作になります", ) # Dependencies of Diffusers noise sampler has been removed for clarity in training parser.add_argument( "--training_shift", type=float, default=1.0, help="Discrete flow shift for training timestep distribution adjustment, applied in addition to the weighting scheme, default is 1.0. /タイムステップ分布のための離散フローシフト、重み付けスキームの上に適用される、デフォルトは1.0。", ) def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True): assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません" if args.v_parameterization: logger.warning("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります") if args.clip_skip is not None: logger.warning("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません") # if args.multires_noise_iterations: # logger.info( # f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります" # ) # else: # if args.noise_offset is None: # args.noise_offset = DEFAULT_NOISE_OFFSET # elif args.noise_offset != DEFAULT_NOISE_OFFSET: # logger.info( # f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています" # ) # logger.info(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました") assert ( not hasattr(args, "weighted_captions") or not args.weighted_captions ), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません" if supportTextEncoderCaching: if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs: args.cache_text_encoder_outputs = True logger.warning( "cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / " + "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました" ) # temporary copied from sd3_minimal_inferece.py def get_all_sigmas(sampling: sd3_utils.ModelSamplingDiscreteFlow, steps): start = sampling.timestep(sampling.sigma_max) end = sampling.timestep(sampling.sigma_min) timesteps = torch.linspace(start, end, steps) sigs = [] for x in range(len(timesteps)): ts = timesteps[x] sigs.append(sampling.sigma(ts)) sigs += [0.0] return torch.FloatTensor(sigs) def max_denoise(model_sampling, sigmas): max_sigma = float(model_sampling.sigma_max) sigma = float(sigmas[0]) return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma def do_sample( height: int, width: int, seed: int, cond: Tuple[torch.Tensor, torch.Tensor], neg_cond: Tuple[torch.Tensor, torch.Tensor], mmdit: sd3_models.MMDiT, steps: int, guidance_scale: float, dtype: torch.dtype, device: str, ): latent = torch.zeros(1, 16, height // 8, width // 8, device=device) latent = latent.to(dtype).to(device) # noise = get_noise(seed, latent).to(device) if seed is not None: generator = torch.manual_seed(seed) else: generator = None noise = ( torch.randn(latent.size(), dtype=torch.float32, layout=latent.layout, generator=generator, device="cpu") .to(latent.dtype) .to(device) ) model_sampling = sd3_utils.ModelSamplingDiscreteFlow(shift=3.0) # 3.0 is for SD3 sigmas = get_all_sigmas(model_sampling, steps).to(device) noise_scaled = model_sampling.noise_scaling(sigmas[0], noise, latent, max_denoise(model_sampling, sigmas)) c_crossattn = torch.cat([cond[0], neg_cond[0]]).to(device).to(dtype) y = torch.cat([cond[1], neg_cond[1]]).to(device).to(dtype) x = noise_scaled.to(device).to(dtype) # print(x.shape) # with torch.no_grad(): comfy_pbar = ProgressBar(len(sigmas) - 1) for i in tqdm(range(len(sigmas) - 1)): sigma_hat = sigmas[i] timestep = model_sampling.timestep(sigma_hat).float() timestep = torch.FloatTensor([timestep, timestep]).to(device) x_c_nc = torch.cat([x, x], dim=0) # print(x_c_nc.shape, timestep.shape, c_crossattn.shape, y.shape) mmdit.prepare_block_swap_before_forward() model_output = mmdit(x_c_nc, timestep, context=c_crossattn, y=y) model_output = model_output.float() batched = model_sampling.calculate_denoised(sigma_hat, model_output, x) pos_out, neg_out = batched.chunk(2) denoised = neg_out + (pos_out - neg_out) * guidance_scale # print(denoised.shape) # d = to_d(x, sigma_hat, denoised) dims_to_append = x.ndim - sigma_hat.ndim sigma_hat_dims = sigma_hat[(...,) + (None,) * dims_to_append] # print(dims_to_append, x.shape, sigma_hat.shape, denoised.shape, sigma_hat_dims.shape) """Converts a denoiser output to a Karras ODE derivative.""" d = (x - denoised) / sigma_hat_dims dt = sigmas[i + 1] - sigma_hat # Euler method x = x + d * dt x = x.to(dtype) comfy_pbar.update(1) mmdit.prepare_block_swap_before_forward() return x def sample_images( accelerator: Accelerator, args: argparse.Namespace, epoch, steps, mmdit, vae, text_encoders, sample_prompts_te_outputs, prompt_replacement=None, validation_settings=None, ): logger.info("") logger.info(f"generating sample images at step: {steps}") # unwrap unet and text_encoder(s) mmdit = accelerator.unwrap_model(mmdit) text_encoders = None if text_encoders is None else [accelerator.unwrap_model(te) for te in text_encoders] # print([(te.parameters().__next__().device if te is not None else None) for te in text_encoders]) prompts = [] for line in args.sample_prompts: line = line.strip() if len(line) > 0 and line[0] != "#": prompts.append(line) # preprocess prompts for i in range(len(prompts)): prompt_dict = prompts[i] if isinstance(prompt_dict, str): from .train_util import line_to_prompt_dict prompt_dict = line_to_prompt_dict(prompt_dict) prompts[i] = prompt_dict assert isinstance(prompt_dict, dict) # Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict. prompt_dict["enum"] = i prompt_dict.pop("subset", None) save_dir = args.output_dir + "/sample" os.makedirs(save_dir, exist_ok=True) # save random state to restore later rng_state = torch.get_rng_state() cuda_rng_state = None try: cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None except Exception: pass with torch.no_grad(), accelerator.autocast(): image_tensor_list = [] for prompt_dict in prompts: image_tensor = sample_image_inference( accelerator, args, mmdit, text_encoders, vae, save_dir, prompt_dict, epoch, steps, sample_prompts_te_outputs, prompt_replacement, validation_settings ) print(f"Sampled image shape: {image_tensor.shape}") image_tensor_list.append(image_tensor) torch.set_rng_state(rng_state) if cuda_rng_state is not None: torch.cuda.set_rng_state(cuda_rng_state) clean_memory_on_device(accelerator.device) return torch.cat(image_tensor_list, dim=0) def sample_image_inference( accelerator: Accelerator, args: argparse.Namespace, mmdit: sd3_models.MMDiT, text_encoders: List[Union[CLIPTextModelWithProjection, T5EncoderModel]], vae: sd3_models.SDVAE, save_dir, prompt_dict, epoch, steps, sample_prompts_te_outputs, validation_settings=None, prompt_replacement=None, ): assert isinstance(prompt_dict, dict) if validation_settings is not None: sample_steps = validation_settings["steps"] width = validation_settings["width"] height = validation_settings["height"] scale = validation_settings["guidance_scale"] seed = validation_settings["seed"] else: sample_steps = prompt_dict.get("sample_steps", 30) width = prompt_dict.get("width", 512) height = prompt_dict.get("height", 512) scale = prompt_dict.get("scale", 7.5) seed = prompt_dict.get("seed") # controlnet_image = prompt_dict.get("controlnet_image") negative_prompt = prompt_dict.get("negative_prompt") prompt: str = prompt_dict.get("prompt", "") # sampler_name: str = prompt_dict.get("sample_sampler", args.sample_sampler) if prompt_replacement is not None: prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1]) if negative_prompt is not None: negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1]) if seed is not None: torch.manual_seed(seed) torch.cuda.manual_seed(seed) else: # True random sample image generation torch.seed() torch.cuda.seed() if negative_prompt is None: negative_prompt = "" height = max(64, height - height % 8) # round to divisible by 8 width = max(64, width - width % 8) # round to divisible by 8 logger.info(f"prompt: {prompt}") logger.info(f"negative_prompt: {negative_prompt}") logger.info(f"height: {height}") logger.info(f"width: {width}") logger.info(f"sample_steps: {sample_steps}") logger.info(f"scale: {scale}") # logger.info(f"sample_sampler: {sampler_name}") if seed is not None: logger.info(f"seed: {seed}") # encode prompts tokenize_strategy = strategy_base.TokenizeStrategy.get_strategy() encoding_strategy = strategy_base.TextEncodingStrategy.get_strategy() def encode_prompt(prpt): text_encoder_conds = [] if sample_prompts_te_outputs and prpt in sample_prompts_te_outputs: text_encoder_conds = sample_prompts_te_outputs[prpt] print(f"Using cached text encoder outputs for prompt: {prpt}") if text_encoders is not None: print(f"Encoding prompt: {prpt}") tokens_and_masks = tokenize_strategy.tokenize(prpt) # strategy has apply_t5_attn_mask option encoded_text_encoder_conds = encoding_strategy.encode_tokens(tokenize_strategy, text_encoders, tokens_and_masks) # if text_encoder_conds is not cached, use encoded_text_encoder_conds if len(text_encoder_conds) == 0: text_encoder_conds = encoded_text_encoder_conds else: # if encoded_text_encoder_conds is not None, update cached text_encoder_conds for i in range(len(encoded_text_encoder_conds)): if encoded_text_encoder_conds[i] is not None: text_encoder_conds[i] = encoded_text_encoder_conds[i] return text_encoder_conds lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(prompt) cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled) # encode negative prompts lg_out, t5_out, pooled, l_attn_mask, g_attn_mask, t5_attn_mask = encode_prompt(negative_prompt) neg_cond = encoding_strategy.concat_encodings(lg_out, t5_out, pooled) # sample image clean_memory_on_device(accelerator.device) with accelerator.autocast(), torch.no_grad(): # mmdit may be fp8, so we need weight_dtype here. vae is always in that dtype. latents = do_sample(height, width, seed, cond, neg_cond, mmdit, sample_steps, scale, vae.dtype, accelerator.device) # latent to image clean_memory_on_device(accelerator.device) org_vae_device = vae.device # will be on cpu vae.to(accelerator.device) latents = vae.process_out(latents.to(vae.device, dtype=vae.dtype)) image_tensor = vae.decode(latents) vae.to(org_vae_device) clean_memory_on_device(accelerator.device) image = image_tensor.float() image = torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)[0] decoded_np = 255.0 * np.moveaxis(image.cpu().numpy(), 0, 2) decoded_np = decoded_np.astype(np.uint8) image = Image.fromarray(decoded_np) # adding accelerator.wait_for_everyone() here should sync up and ensure that sample images are saved in the same order as the original prompt list # but adding 'enum' to the filename should be enough ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}" seed_suffix = "" if seed is None else f"_{seed}" i: int = prompt_dict["enum"] img_filename = f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{i:02d}_{ts_str}{seed_suffix}.png" image.save(os.path.join(save_dir, img_filename)) return image_tensor # # send images to wandb if enabled # if "wandb" in [tracker.name for tracker in accelerator.trackers]: # wandb_tracker = accelerator.get_tracker("wandb") # import wandb # # not to commit images to avoid inconsistency between training and logging steps # wandb_tracker.log({f"sample_{i}": wandb.Image(image, caption=prompt)}, commit=False) # positive prompt as a caption # region Diffusers from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils.torch_utils import randn_tensor from diffusers.utils import BaseOutput @dataclass class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Euler scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. shift (`float`, defaults to 1.0): The shift value for the timestep schedule. """ _compatibles = [] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, shift: float = 1.0, ): timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) sigmas = timesteps / num_train_timesteps sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) self.timesteps = sigmas * num_train_timesteps self._step_index = None self._begin_index = None self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def scale_noise( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Forward process in flow-matching Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sigma * noise + (1.0 - sigma) * sample return sample def _sigma_to_t(self, sigma): return sigma * self.config.num_train_timesteps def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps timesteps = np.linspace(self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps) sigmas = timesteps / self.config.num_train_timesteps sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) timesteps = sigmas * self.config.num_train_timesteps self.timesteps = timesteps.to(device=device) self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self._step_index = None self._begin_index = None def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if self.step_index is None: self._init_step_index(timestep) # Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) sigma = self.sigmas[self.step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator) eps = noise * s_noise sigma_hat = sigma * (gamma + 1) if gamma > 0: sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise # NOTE: "original_sample" should not be an expected prediction_type but is left in for # backwards compatibility # if self.config.prediction_type == "vector_field": denoised = sample - model_output * sigma # 2. Convert to an ODE derivative derivative = (sample - denoised) / sigma_hat dt = self.sigmas[self.step_index + 1] - sigma_hat prev_sample = sample + derivative * dt # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) def __len__(self): return self.config.num_train_timesteps def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32): sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype) schedule_timesteps = noise_scheduler.timesteps.to(device) timesteps = timesteps.to(device) step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < n_dim: sigma = sigma.unsqueeze(-1) return sigma def compute_density_for_timestep_sampling( weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None ): """Compute the density for sampling the timesteps when doing SD3 training. Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. SD3 paper reference: https://arxiv.org/abs/2403.03206v1. """ if weighting_scheme == "logit_normal": # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$). u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu") u = torch.nn.functional.sigmoid(u) elif weighting_scheme == "mode": u = torch.rand(size=(batch_size,), device="cpu") u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u) else: u = torch.rand(size=(batch_size,), device="cpu") return u def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None): """Computes loss weighting scheme for SD3 training. Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528. SD3 paper reference: https://arxiv.org/abs/2403.03206v1. """ if weighting_scheme == "sigma_sqrt": weighting = (sigmas**-2.0).float() elif weighting_scheme == "cosmap": bot = 1 - 2 * sigmas + 2 * sigmas**2 weighting = 2 / (math.pi * bot) else: weighting = torch.ones_like(sigmas) return weighting # endregion def get_noisy_model_input_and_timesteps(args, latents, noise, device, dtype) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: bsz = latents.shape[0] # Sample a random timestep for each image # for weighting schemes where we sample timesteps non-uniformly u = compute_density_for_timestep_sampling( weighting_scheme=args.weighting_scheme, batch_size=bsz, logit_mean=args.logit_mean, logit_std=args.logit_std, mode_scale=args.mode_scale, ) t_min = args.min_timestep if args.min_timestep is not None else 0 t_max = args.max_timestep if args.max_timestep is not None else 1000 shift = args.training_shift # weighting shift, value >1 will shift distribution to noisy side (focus more on overall structure), value <1 will shift towards less-noisy side (focus more on details) u = (u * shift) / (1 + (shift - 1) * u) indices = (u * (t_max - t_min) + t_min).long() timesteps = indices.to(device=device, dtype=dtype) # sigmas according to flowmatching sigmas = timesteps / 1000 sigmas = sigmas.view(-1, 1, 1, 1) noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents return noisy_model_input, timesteps, sigmas