import math from functools import cache import torch import torch.nn as nn import torch.nn.functional as F from .base import LycorisBaseModule from ..functional.general import rebuild_tucker from ..logging import logger @cache def log_wd(): return logger.warning( "Using weight_decompose=True with LoRA (DoRA) will ignore network_dropout." "Only rank dropout and module dropout will be applied" ) class LoConModule(LycorisBaseModule): name = "locon" support_module = { "linear", "conv1d", "conv2d", "conv3d", } weight_list = [ "lora_up.weight", "lora_down.weight", "lora_mid.weight", "alpha", "dora_scale", ] weight_list_det = ["lora_up.weight"] def __init__( self, lora_name, org_module: nn.Module, multiplier=1.0, lora_dim=4, alpha=1, dropout=0.0, rank_dropout=0.0, module_dropout=0.0, use_tucker=False, use_scalar=False, rank_dropout_scale=False, weight_decompose=False, wd_on_out=False, bypass_mode=None, rs_lora=False, **kwargs, ): """if alpha == 0 or None, alpha is rank (no scaling).""" super().__init__( lora_name, org_module, multiplier, dropout, rank_dropout, module_dropout, rank_dropout_scale, bypass_mode, ) if self.module_type not in self.support_module: raise ValueError(f"{self.module_type} is not supported in LoRA/LoCon algo.") self.lora_dim = lora_dim self.tucker = False self.rs_lora = rs_lora if self.module_type.startswith("conv"): self.isconv = True # For general LoCon in_dim = org_module.in_channels k_size = org_module.kernel_size stride = org_module.stride padding = org_module.padding out_dim = org_module.out_channels use_tucker = use_tucker and any(i != 1 for i in k_size) self.down_op = self.op self.up_op = self.op if use_tucker and any(i != 1 for i in k_size): self.lora_down = self.module(in_dim, lora_dim, 1, bias=False) self.lora_mid = self.module( lora_dim, lora_dim, k_size, stride, padding, bias=False ) self.tucker = True else: self.lora_down = self.module( in_dim, lora_dim, k_size, stride, padding, bias=False ) self.lora_up = self.module(lora_dim, out_dim, 1, bias=False) elif isinstance(org_module, nn.Linear): self.isconv = False self.down_op = F.linear self.up_op = F.linear in_dim = org_module.in_features out_dim = org_module.out_features self.lora_down = nn.Linear(in_dim, lora_dim, bias=False) self.lora_up = nn.Linear(lora_dim, out_dim, bias=False) else: raise NotImplementedError self.wd = weight_decompose self.wd_on_out = wd_on_out if self.wd: org_weight = org_module.weight.cpu().clone().float() self.dora_norm_dims = org_weight.dim() - 1 if self.wd_on_out: self.dora_scale = nn.Parameter( torch.norm( org_weight.reshape(org_weight.shape[0], -1), dim=1, keepdim=True, ).reshape(org_weight.shape[0], *[1] * self.dora_norm_dims) ).float() else: self.dora_scale = nn.Parameter( torch.norm( org_weight.transpose(1, 0).reshape(org_weight.shape[1], -1), dim=1, keepdim=True, ) .reshape(org_weight.shape[1], *[1] * self.dora_norm_dims) .transpose(1, 0) ).float() if dropout: self.dropout = nn.Dropout(dropout) if self.wd: log_wd() else: self.dropout = nn.Identity() if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = lora_dim if alpha is None or alpha == 0 else alpha r_factor = lora_dim if self.rs_lora: r_factor = math.sqrt(r_factor) self.scale = alpha / r_factor self.register_buffer("alpha", torch.tensor(alpha * (lora_dim / r_factor))) if use_scalar: self.scalar = nn.Parameter(torch.tensor(0.0)) else: self.register_buffer("scalar", torch.tensor(1.0), persistent=False) # same as microsoft's torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) if use_scalar: torch.nn.init.kaiming_uniform_(self.lora_up.weight, a=math.sqrt(5)) else: torch.nn.init.constant_(self.lora_up.weight, 0) if self.tucker: torch.nn.init.kaiming_uniform_(self.lora_mid.weight, a=math.sqrt(5)) @classmethod def make_module_from_state_dict( cls, lora_name, orig_module, up, down, mid, alpha, dora_scale ): module = cls( lora_name, orig_module, 1, down.size(0), float(alpha), use_tucker=mid is not None, weight_decompose=dora_scale is not None, ) module.lora_up.weight.data.copy_(up) module.lora_down.weight.data.copy_(down) if mid is not None: module.lora_mid.weight.data.copy_(mid) if dora_scale is not None: module.dora_scale.copy_(dora_scale) return module def load_weight_hook(self, module: nn.Module, incompatible_keys): missing_keys = incompatible_keys.missing_keys for key in missing_keys: if "scalar" in key: del missing_keys[missing_keys.index(key)] if isinstance(self.scalar, nn.Parameter): self.scalar.data.copy_(torch.ones_like(self.scalar)) elif getattr(self, "scalar", None) is not None: self.scalar.copy_(torch.ones_like(self.scalar)) else: self.register_buffer( "scalar", torch.ones_like(self.scalar), persistent=False ) def make_weight(self, device=None): wa = self.lora_up.weight.to(device) wb = self.lora_down.weight.to(device) if self.tucker: t = self.lora_mid.weight wa = wa.view(wa.size(0), -1).transpose(0, 1) wb = wb.view(wb.size(0), -1) weight = rebuild_tucker(t, wa, wb) else: weight = wa.view(wa.size(0), -1) @ wb.view(wb.size(0), -1) weight = weight.view(self.shape) if self.training and self.rank_dropout: drop = (torch.rand(weight.size(0), device=device) > self.rank_dropout).to( weight.dtype ) drop = drop.view(-1, *[1] * len(weight.shape[1:])) if self.rank_dropout_scale: drop /= drop.mean() weight *= drop return weight * self.scalar.to(device) def get_diff_weight(self, multiplier=1, shape=None, device=None): scale = self.scale * multiplier diff = self.make_weight(device=device) * scale if shape is not None: diff = diff.view(shape) if device is not None: diff = diff.to(device) return diff, None def get_merged_weight(self, multiplier=1, shape=None, device=None): diff = self.get_diff_weight(multiplier=1, shape=shape, device=device)[0] weight = self.org_weight if self.wd: merged = self.apply_weight_decompose(weight + diff, multiplier) else: merged = weight + diff * multiplier return merged, None def apply_weight_decompose(self, weight, multiplier=1): weight = weight.to(self.dora_scale.dtype) if self.wd_on_out: weight_norm = ( weight.reshape(weight.shape[0], -1) .norm(dim=1) .reshape(weight.shape[0], *[1] * self.dora_norm_dims) ) + torch.finfo(weight.dtype).eps else: weight_norm = ( weight.transpose(0, 1) .reshape(weight.shape[1], -1) .norm(dim=1, keepdim=True) .reshape(weight.shape[1], *[1] * self.dora_norm_dims) .transpose(0, 1) ) + torch.finfo(weight.dtype).eps scale = self.dora_scale.to(weight.device) / weight_norm if multiplier != 1: scale = multiplier * (scale - 1) + 1 return weight * scale def custom_state_dict(self): destination = {} if self.wd: destination["dora_scale"] = self.dora_scale destination["alpha"] = self.alpha destination["lora_up.weight"] = self.lora_up.weight * self.scalar destination["lora_down.weight"] = self.lora_down.weight if self.tucker: destination["lora_mid.weight"] = self.lora_mid.weight return destination @torch.no_grad() def apply_max_norm(self, max_norm, device=None): orig_norm = self.make_weight(device).norm() * self.scale norm = torch.clamp(orig_norm, max_norm / 2) desired = torch.clamp(norm, max=max_norm) ratio = desired.cpu() / norm.cpu() scaled = norm != desired if scaled: self.scalar *= ratio return scaled, orig_norm * ratio def bypass_forward_diff(self, x, scale=1): if self.tucker: mid = self.lora_mid(self.lora_down(x)) else: mid = self.lora_down(x) if self.rank_dropout and self.training: drop = ( torch.rand(self.lora_dim, device=mid.device) > self.rank_dropout ).to(mid.dtype) if self.rank_dropout_scale: drop /= drop.mean() if (dims := len(x.shape)) == 4: drop = drop.view(1, -1, 1, 1) else: drop = drop.view(*[1] * (dims - 1), -1) mid = mid * drop return self.dropout(self.lora_up(mid) * self.scalar * self.scale * scale) def bypass_forward(self, x, scale=1): return self.org_forward(x) + self.bypass_forward_diff(x, scale=scale) def forward(self, x): if self.module_dropout and self.training: if torch.rand(1) < self.module_dropout: return self.org_forward(x) scale = self.scale dtype = self.dtype if not self.bypass_mode: diff_weight = self.make_weight(x.device).to(dtype) * scale weight = self.org_module[0].weight.data.to(dtype) if self.wd: weight = self.apply_weight_decompose( weight + diff_weight, self.multiplier ) else: weight = weight + diff_weight * self.multiplier bias = ( None if self.org_module[0].bias is None else self.org_module[0].bias.data ) return self.op(x, weight, bias, **self.kw_dict) else: return self.bypass_forward(x, scale=self.multiplier)