# temporary minimum implementation of LoRA # FLUX doesn't have Conv2d, so we ignore it # TODO commonize with the original implementation # LoRA network module # reference: # https://github.com/microsoft/LoRA/blob/main/loralib/layers.py # https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py import math import os from typing import Dict, List, Optional, Tuple, Type, Union from diffusers import AutoencoderKL from transformers import CLIPTextModel import numpy as np import torch import re #from ..library.utils import setup_logging #setup_logging() import logging logger = logging.getLogger(__name__) class LoRAModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. """ def __init__( self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, dropout=None, rank_dropout=None, module_dropout=None, split_dims: Optional[List[int]] = None, ): """if alpha == 0 or None, alpha is rank (no scaling).""" super().__init__() self.lora_name = lora_name if org_module.__class__.__name__ == "Conv2d": in_dim = org_module.in_channels out_dim = org_module.out_channels else: in_dim = org_module.in_features out_dim = org_module.out_features self.lora_dim = lora_dim self.split_dims = split_dims if split_dims is None: if org_module.__class__.__name__ == "Conv2d": kernel_size = org_module.kernel_size stride = org_module.stride padding = org_module.padding self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) else: self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) torch.nn.init.zeros_(self.lora_up.weight) else: # conv2d not supported assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim" assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear" # print(f"split_dims: {split_dims}") self.lora_down = torch.nn.ModuleList( [torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))] ) self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims]) for lora_down in self.lora_down: torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5)) for lora_up in self.lora_up: torch.nn.init.zeros_(lora_up.weight) if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = self.lora_dim if alpha is None or alpha == 0 else alpha self.scale = alpha / self.lora_dim self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える # same as microsoft's self.multiplier = multiplier self.org_module = org_module # remove in applying self.dropout = dropout self.rank_dropout = rank_dropout self.module_dropout = module_dropout def apply_to(self): self.org_forward = self.org_module.forward self.org_module.forward = self.forward del self.org_module def forward(self, x): org_forwarded = self.org_forward(x) # module dropout if self.module_dropout is not None and self.training: if torch.rand(1) < self.module_dropout: return org_forwarded if self.split_dims is None: lx = self.lora_down(x) # normal dropout if self.dropout is not None and self.training: lx = torch.nn.functional.dropout(lx, p=self.dropout) # rank dropout if self.rank_dropout is not None and self.training: mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout if len(lx.size()) == 3: mask = mask.unsqueeze(1) # for Text Encoder elif len(lx.size()) == 4: mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d lx = lx * mask # scaling for rank dropout: treat as if the rank is changed # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability else: scale = self.scale lx = self.lora_up(lx) return org_forwarded + lx * self.multiplier * scale else: lxs = [lora_down(x) for lora_down in self.lora_down] # normal dropout if self.dropout is not None and self.training: lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs] # rank dropout if self.rank_dropout is not None and self.training: masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs] for i in range(len(lxs)): if len(lx.size()) == 3: masks[i] = masks[i].unsqueeze(1) elif len(lx.size()) == 4: masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1) lxs[i] = lxs[i] * masks[i] # scaling for rank dropout: treat as if the rank is changed scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability else: scale = self.scale lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale class LoRAInfModule(LoRAModule): def __init__( self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, **kwargs, ): # no dropout for inference super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) self.org_module_ref = [org_module] # 後から参照できるように self.enabled = True self.network: LoRANetwork = None def set_network(self, network): self.network = network # freezeしてマージする def merge_to(self, sd, dtype, device): # extract weight from org_module org_sd = self.org_module.state_dict() weight = org_sd["weight"] org_dtype = weight.dtype org_device = weight.device weight = weight.to(torch.float) # calc in float if dtype is None: dtype = org_dtype if device is None: device = org_device if self.split_dims is None: # get up/down weight down_weight = sd["lora_down.weight"].to(torch.float).to(device) up_weight = sd["lora_up.weight"].to(torch.float).to(device) # merge weight if len(weight.size()) == 2: # linear weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 weight = ( weight + self.multiplier * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * self.scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) # logger.info(conved.size(), weight.size(), module.stride, module.padding) weight = weight + self.multiplier * conved * self.scale # set weight to org_module org_sd["weight"] = weight.to(dtype) self.org_module.load_state_dict(org_sd) else: # split_dims total_dims = sum(self.split_dims) for i in range(len(self.split_dims)): # get up/down weight down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) # (rank, in_dim) up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) # (split dim, rank) # pad up_weight -> (total_dims, rank) padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float) padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight # merge weight weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale # set weight to org_module org_sd["weight"] = weight.to(dtype) self.org_module.load_state_dict(org_sd) # 復元できるマージのため、このモジュールのweightを返す def get_weight(self, multiplier=None): if multiplier is None: multiplier = self.multiplier # get up/down weight from module up_weight = self.lora_up.weight.to(torch.float) down_weight = self.lora_down.weight.to(torch.float) # pre-calculated weight if len(down_weight.size()) == 2: # linear weight = self.multiplier * (up_weight @ down_weight) * self.scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 weight = ( self.multiplier * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * self.scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) weight = self.multiplier * conved * self.scale return weight def set_region(self, region): self.region = region self.region_mask = None def default_forward(self, x): # logger.info(f"default_forward {self.lora_name} {x.size()}") if self.split_dims is None: lx = self.lora_down(x) lx = self.lora_up(lx) return self.org_forward(x) + lx * self.multiplier * self.scale else: lxs = [lora_down(x) for lora_down in self.lora_down] lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale def forward(self, x): if not self.enabled: return self.org_forward(x) return self.default_forward(x) def create_network( multiplier: float, network_dim: Optional[int], network_alpha: Optional[float], ae: AutoencoderKL, text_encoders: List[CLIPTextModel], flux, neuron_dropout: Optional[float] = None, **kwargs, ): if network_dim is None: network_dim = 4 # default if network_alpha is None: network_alpha = 1.0 # extract dim/alpha for conv2d, and block dim conv_dim = kwargs.get("conv_dim", None) conv_alpha = kwargs.get("conv_alpha", None) if conv_dim is not None: conv_dim = int(conv_dim) if conv_alpha is None: conv_alpha = 1.0 else: conv_alpha = float(conv_alpha) # rank/module dropout rank_dropout = kwargs.get("rank_dropout", None) if rank_dropout is not None: rank_dropout = float(rank_dropout) module_dropout = kwargs.get("module_dropout", None) if module_dropout is not None: module_dropout = float(module_dropout) # single or double blocks train_blocks = kwargs.get("train_blocks", None) # None (default), "all" (same as None), "single", "double" if train_blocks is not None: assert train_blocks in ["all", "single", "double"], f"invalid train_blocks: {train_blocks}" only_if_contains = kwargs.get("only_if_contains", None) if only_if_contains is not None: only_if_contains = [word.strip() for word in only_if_contains.split(',')] # split qkv split_qkv = kwargs.get("split_qkv", False) if split_qkv is not None: split_qkv = True if split_qkv == "True" else False # train T5XXL train_t5xxl = kwargs.get("train_t5xxl", False) if train_t5xxl is not None: train_t5xxl = True if train_t5xxl == "True" else False # すごく引数が多いな ( ^ω^)・・・ network = LoRANetwork( text_encoders, flux, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha, dropout=neuron_dropout, rank_dropout=rank_dropout, module_dropout=module_dropout, conv_lora_dim=conv_dim, conv_alpha=conv_alpha, train_blocks=train_blocks, split_qkv=split_qkv, train_t5xxl=train_t5xxl, varbose=True, only_if_contains=only_if_contains ) loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) return network # Create network from weights for inference, weights are not loaded here (because can be merged) def create_network_from_weights(multiplier, file, ae, text_encoders, flux, weights_sd=None, for_inference=False, **kwargs): # if unet is an instance of SdxlUNet2DConditionModel or subclass, set is_sdxl to True if weights_sd is None: if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") # get dim/alpha mapping, and train t5xxl modules_dim = {} modules_alpha = {} train_t5xxl = None for key, value in weights_sd.items(): if "." not in key: continue lora_name = key.split(".")[0] if "alpha" in key: modules_alpha[lora_name] = value elif "lora_down" in key: dim = value.size()[0] modules_dim[lora_name] = dim # logger.info(lora_name, value.size(), dim) if train_t5xxl is None or train_t5xxl is False: train_t5xxl = "lora_te3" in lora_name if train_t5xxl is None: train_t5xxl = False # # split qkv # double_qkv_rank = None # single_qkv_rank = None # rank = None # for lora_name, dim in modules_dim.items(): # if "double" in lora_name and "qkv" in lora_name: # double_qkv_rank = dim # elif "single" in lora_name and "linear1" in lora_name: # single_qkv_rank = dim # elif rank is None: # rank = dim # if double_qkv_rank is not None and single_qkv_rank is not None and rank is not None: # break # split_qkv = (double_qkv_rank is not None and double_qkv_rank != rank) or ( # single_qkv_rank is not None and single_qkv_rank != rank # ) split_qkv = False # split_qkv is not needed to care, because state_dict is qkv combined module_class = LoRAInfModule if for_inference else LoRAModule network = LoRANetwork( text_encoders, flux, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class, split_qkv=split_qkv, train_t5xxl=train_t5xxl, ) return network, weights_sd class LoRANetwork(torch.nn.Module): # FLUX_TARGET_REPLACE_MODULE = ["DoubleStreamBlock", "SingleStreamBlock"] FLUX_TARGET_REPLACE_MODULE_DOUBLE = ["DoubleStreamBlock"] FLUX_TARGET_REPLACE_MODULE_SINGLE = ["SingleStreamBlock"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPSdpaAttention", "CLIPMLP", "T5Attention", "T5DenseGatedActDense"] LORA_PREFIX_FLUX = "lora_unet" # make ComfyUI compatible LORA_PREFIX_TEXT_ENCODER_CLIP = "lora_te1" LORA_PREFIX_TEXT_ENCODER_T5 = "lora_te3" # make ComfyUI compatible def __init__( self, text_encoders: Union[List[CLIPTextModel], CLIPTextModel], unet, multiplier: float = 1.0, lora_dim: int = 4, alpha: float = 1, dropout: Optional[float] = None, rank_dropout: Optional[float] = None, module_dropout: Optional[float] = None, conv_lora_dim: Optional[int] = None, conv_alpha: Optional[float] = None, module_class: Type[object] = LoRAModule, modules_dim: Optional[Dict[str, int]] = None, modules_alpha: Optional[Dict[str, int]] = None, train_blocks: Optional[str] = None, split_qkv: bool = False, train_t5xxl: bool = False, varbose: Optional[bool] = False, only_if_contains: Optional[List[str]] = None, ) -> None: super().__init__() self.multiplier = multiplier self.lora_dim = lora_dim self.alpha = alpha self.conv_lora_dim = conv_lora_dim self.conv_alpha = conv_alpha self.dropout = dropout self.rank_dropout = rank_dropout self.module_dropout = module_dropout self.train_blocks = train_blocks if train_blocks is not None else "all" self.split_qkv = split_qkv self.train_t5xxl = train_t5xxl self.loraplus_lr_ratio = None self.loraplus_unet_lr_ratio = None self.loraplus_text_encoder_lr_ratio = None self.only_if_contains = only_if_contains if modules_dim is not None: logger.info(f"create LoRA network from weights") else: logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") logger.info( f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}" ) # if self.conv_lora_dim is not None: # logger.info( # f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}" # ) if self.split_qkv: logger.info(f"split qkv for LoRA") if self.train_blocks is not None: logger.info(f"train {self.train_blocks} blocks only") if train_t5xxl: logger.info(f"train T5XXL as well") #self.only_if_contains = ["lora_unet_single_blocks_20_linear2"] # create module instances def create_modules( is_flux: bool, text_encoder_idx: Optional[int], root_module: torch.nn.Module, target_replace_modules: List[str] ) -> List[LoRAModule]: prefix = ( self.LORA_PREFIX_FLUX if is_flux else (self.LORA_PREFIX_TEXT_ENCODER_CLIP if text_encoder_idx == 0 else self.LORA_PREFIX_TEXT_ENCODER_T5) ) loras = [] skipped = [] for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: for child_name, child_module in module.named_modules(): is_linear = child_module.__class__.__name__ == "Linear" is_conv2d = child_module.__class__.__name__ == "Conv2d" is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) if is_linear or is_conv2d: lora_name = prefix + "." + name + "." + child_name lora_name = lora_name.replace(".", "_") #lora_unet_single_blocks_20_linear2 if "unet" in lora_name and (self.only_if_contains is not None and not any(word in lora_name for word in self.only_if_contains)): continue dim = None alpha = None if modules_dim is not None: # モジュール指定あり if lora_name in modules_dim: dim = modules_dim[lora_name] alpha = modules_alpha[lora_name] else: # 通常、すべて対象とする if is_linear or is_conv2d_1x1: dim = self.lora_dim alpha = self.alpha elif self.conv_lora_dim is not None: dim = self.conv_lora_dim alpha = self.conv_alpha if dim is None or dim == 0: # skipした情報を出力 if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None): skipped.append(lora_name) continue # qkv split split_dims = None if is_flux and split_qkv: if "double" in lora_name and "qkv" in lora_name: split_dims = [3072] * 3 elif "single" in lora_name and "linear1" in lora_name: split_dims = [3072] * 3 + [12288] lora = module_class( lora_name, child_module, self.multiplier, dim, alpha, dropout=dropout, rank_dropout=rank_dropout, module_dropout=module_dropout, split_dims=split_dims, ) loras.append(lora) return loras, skipped # create LoRA for text encoder # 毎回すべてのモジュールを作るのは無駄なので要検討 self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = [] skipped_te = [] for i, text_encoder in enumerate(text_encoders): index = i if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False break logger.info(f"create LoRA for Text Encoder {index+1}:") text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.") self.text_encoder_loras.extend(text_encoder_loras) skipped_te += skipped # create LoRA for U-Net if self.train_blocks == "all": target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE + LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE elif self.train_blocks == "single": target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_SINGLE elif self.train_blocks == "double": target_replace_modules = LoRANetwork.FLUX_TARGET_REPLACE_MODULE_DOUBLE self.unet_loras: List[Union[LoRAModule, LoRAInfModule]] self.unet_loras, skipped_un = create_modules(True, None, unet, target_replace_modules) logger.info(f"create LoRA for FLUX {self.train_blocks} blocks: {len(self.unet_loras)} modules.") #print(self.unet_loras) skipped = skipped_te + skipped_un if varbose and len(skipped) > 0: logger.warning( f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" ) for name in skipped: logger.info(f"\t{name}") # assertion names = set() for lora in self.text_encoder_loras + self.unet_loras: assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" names.add(lora.lora_name) def set_multiplier(self, multiplier): self.multiplier = multiplier for lora in self.text_encoder_loras + self.unet_loras: lora.multiplier = self.multiplier def set_enabled(self, is_enabled): for lora in self.text_encoder_loras + self.unet_loras: lora.enabled = is_enabled def load_weights(self, file): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") info = self.load_state_dict(weights_sd, False) return info def load_state_dict(self, state_dict, strict=True): # override to convert original weight to split qkv if not self.split_qkv: return super().load_state_dict(state_dict, strict) # split qkv for key in list(state_dict.keys()): if "double" in key and "qkv" in key: split_dims = [3072] * 3 elif "single" in key and "linear1" in key: split_dims = [3072] * 3 + [12288] else: continue weight = state_dict[key] lora_name = key.split(".")[0] if "lora_down" in key and "weight" in key: # dense weight (rank*3, in_dim) split_weight = torch.chunk(weight, len(split_dims), dim=0) for i, split_w in enumerate(split_weight): state_dict[f"{lora_name}.lora_down.{i}.weight"] = split_w del state_dict[key] # print(f"split {key}: {weight.shape} to {[w.shape for w in split_weight]}") elif "lora_up" in key and "weight" in key: # sparse weight (out_dim=sum(split_dims), rank*3) rank = weight.size(1) // len(split_dims) i = 0 for j in range(len(split_dims)): state_dict[f"{lora_name}.lora_up.{j}.weight"] = weight[i : i + split_dims[j], j * rank : (j + 1) * rank] i += split_dims[j] del state_dict[key] # # check is sparse # i = 0 # is_zero = True # for j in range(len(split_dims)): # for k in range(len(split_dims)): # if j == k: # continue # is_zero = is_zero and torch.all(weight[i : i + split_dims[j], k * rank : (k + 1) * rank] == 0) # i += split_dims[j] # if not is_zero: # logger.warning(f"weight is not sparse: {key}") # else: # logger.info(f"weight is sparse: {key}") # print( # f"split {key}: {weight.shape} to {[state_dict[k].shape for k in [f'{lora_name}.lora_up.{j}.weight' for j in range(len(split_dims))]]}" # ) # alpha is unchanged return super().load_state_dict(state_dict, strict) def state_dict(self, destination=None, prefix="", keep_vars=False): if not self.split_qkv: return super().state_dict(destination, prefix, keep_vars) # merge qkv state_dict = super().state_dict(destination, prefix, keep_vars) new_state_dict = {} for key in list(state_dict.keys()): if "double" in key and "qkv" in key: split_dims = [3072] * 3 elif "single" in key and "linear1" in key: split_dims = [3072] * 3 + [12288] else: new_state_dict[key] = state_dict[key] continue if key not in state_dict: continue # already merged lora_name = key.split(".")[0] # (rank, in_dim) * 3 down_weights = [state_dict.pop(f"{lora_name}.lora_down.{i}.weight") for i in range(len(split_dims))] # (split dim, rank) * 3 up_weights = [state_dict.pop(f"{lora_name}.lora_up.{i}.weight") for i in range(len(split_dims))] alpha = state_dict.pop(f"{lora_name}.alpha") # merge down weight down_weight = torch.cat(down_weights, dim=0) # (rank, split_dim) * 3 -> (rank*3, sum of split_dim) # merge up weight (sum of split_dim, rank*3) rank = up_weights[0].size(1) up_weight = torch.zeros((sum(split_dims), down_weight.size(0)), device=down_weight.device, dtype=down_weight.dtype) i = 0 for j in range(len(split_dims)): up_weight[i : i + split_dims[j], j * rank : (j + 1) * rank] = up_weights[j] i += split_dims[j] new_state_dict[f"{lora_name}.lora_down.weight"] = down_weight new_state_dict[f"{lora_name}.lora_up.weight"] = up_weight new_state_dict[f"{lora_name}.alpha"] = alpha # print( # f"merged {lora_name}: {lora_name}, {[w.shape for w in down_weights]}, {[w.shape for w in up_weights]} to {down_weight.shape}, {up_weight.shape}" # ) print(f"new key: {lora_name}.lora_down.weight, {lora_name}.lora_up.weight, {lora_name}.alpha") return new_state_dict def apply_to(self, text_encoders, flux, apply_text_encoder=True, apply_unet=True): if apply_text_encoder: logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") else: self.text_encoder_loras = [] if apply_unet: logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: lora.apply_to() self.add_module(lora.lora_name, lora) # マージできるかどうかを返す def is_mergeable(self): return True # TODO refactor to common function with apply_to def merge_to(self, text_encoders, flux, weights_sd, dtype=None, device=None): apply_text_encoder = apply_unet = False for key in weights_sd.keys(): if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP) or key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5): apply_text_encoder = True elif key.startswith(LoRANetwork.LORA_PREFIX_FLUX): apply_unet = True if apply_text_encoder: logger.info("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: logger.info("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: sd_for_lora = {} for key in weights_sd.keys(): if key.startswith(lora.lora_name): sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] lora.merge_to(sd_for_lora, dtype, device) logger.info(f"weights are merged") def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): self.loraplus_lr_ratio = loraplus_lr_ratio self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}") logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}") def prepare_optimizer_params_with_multiple_te_lrs(self, text_encoder_lr, unet_lr, default_lr): # make sure text_encoder_lr as list of two elements # if float, use the same value for both text encoders if text_encoder_lr is None or (isinstance(text_encoder_lr, list) and len(text_encoder_lr) == 0): text_encoder_lr = [default_lr, default_lr] elif isinstance(text_encoder_lr, float) or isinstance(text_encoder_lr, int): text_encoder_lr = [float(text_encoder_lr), float(text_encoder_lr)] elif len(text_encoder_lr) == 1: text_encoder_lr = [text_encoder_lr[0], text_encoder_lr[0]] self.requires_grad_(True) all_params = [] lr_descriptions = [] def assemble_params(loras, lr, loraplus_ratio): param_groups = {"lora": {}, "plus": {}} for lora in loras: for name, param in lora.named_parameters(): if loraplus_ratio is not None and "lora_up" in name: param_groups["plus"][f"{lora.lora_name}.{name}"] = param else: param_groups["lora"][f"{lora.lora_name}.{name}"] = param params = [] descriptions = [] for key in param_groups.keys(): param_data = {"params": param_groups[key].values()} if len(param_data["params"]) == 0: continue if lr is not None: if key == "plus": param_data["lr"] = lr * loraplus_ratio else: param_data["lr"] = lr if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: logger.info("NO LR skipping!") continue params.append(param_data) descriptions.append("plus" if key == "plus" else "") return params, descriptions if self.text_encoder_loras: loraplus_lr_ratio = self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio # split text encoder loras for te1 and te3 te1_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_CLIP)] te3_loras = [lora for lora in self.text_encoder_loras if lora.lora_name.startswith(self.LORA_PREFIX_TEXT_ENCODER_T5)] if len(te1_loras) > 0: logger.info(f"Text Encoder 1 (CLIP-L): {len(te1_loras)} modules, LR {text_encoder_lr[0]}") params, descriptions = assemble_params(te1_loras, text_encoder_lr[0], loraplus_lr_ratio) all_params.extend(params) lr_descriptions.extend(["textencoder 1 " + (" " + d if d else "") for d in descriptions]) if len(te3_loras) > 0: logger.info(f"Text Encoder 2 (T5XXL): {len(te3_loras)} modules, LR {text_encoder_lr[1]}") params, descriptions = assemble_params(te3_loras, text_encoder_lr[1], loraplus_lr_ratio) all_params.extend(params) lr_descriptions.extend(["textencoder 2 " + (" " + d if d else "") for d in descriptions]) if self.unet_loras: params, descriptions = assemble_params( self.unet_loras, unet_lr if unet_lr is not None else default_lr, self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio, ) all_params.extend(params) lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) return all_params, lr_descriptions def enable_gradient_checkpointing(self): # not supported pass def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file) def backup_weights(self): # 重みのバックアップを行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] if not hasattr(org_module, "_lora_org_weight"): sd = org_module.state_dict() org_module._lora_org_weight = sd["weight"].detach().clone() org_module._lora_restored = True def restore_weights(self): # 重みのリストアを行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] if not org_module._lora_restored: sd = org_module.state_dict() sd["weight"] = org_module._lora_org_weight org_module.load_state_dict(sd) org_module._lora_restored = True def pre_calculation(self): # 事前計算を行う loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras for lora in loras: org_module = lora.org_module_ref[0] sd = org_module.state_dict() org_weight = sd["weight"] lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) sd["weight"] = org_weight + lora_weight assert sd["weight"].shape == org_weight.shape org_module.load_state_dict(sd) org_module._lora_restored = False lora.enabled = False def apply_max_norm_regularization(self, max_norm_value, device): downkeys = [] upkeys = [] alphakeys = [] norms = [] keys_scaled = 0 state_dict = self.state_dict() for key in state_dict.keys(): if "lora_down" in key and "weight" in key: downkeys.append(key) upkeys.append(key.replace("lora_down", "lora_up")) alphakeys.append(key.replace("lora_down.weight", "alpha")) for i in range(len(downkeys)): down = state_dict[downkeys[i]].to(device) up = state_dict[upkeys[i]].to(device) alpha = state_dict[alphakeys[i]].to(device) dim = down.shape[0] scale = alpha / dim if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) else: updown = up @ down updown *= scale norm = updown.norm().clamp(min=max_norm_value / 2) desired = torch.clamp(norm, max=max_norm_value) ratio = desired.cpu() / norm.cpu() sqrt_ratio = ratio**0.5 if ratio != 1: keys_scaled += 1 state_dict[upkeys[i]] *= sqrt_ratio state_dict[downkeys[i]] *= sqrt_ratio scalednorm = updown.norm() * ratio norms.append(scalednorm.item()) return keys_scaled, sum(norms) / len(norms), max(norms) def precalculate_safetensors_hashes(tensors, metadata): """Precalculate the model hashes needed by sd-webui-additional-networks to save time on indexing the model later.""" import hashlib import safetensors.torch from io import BytesIO # Retain only training metadata for hash calculation metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")} bytes = safetensors.torch.save(tensors, metadata) b = BytesIO(bytes) def addnet_hash_legacy(b): """Old model hash used by sd-webui-additional-networks for .safetensors format files""" m = hashlib.sha256() b.seek(0x100000) m.update(b.read(0x10000)) return m.hexdigest()[0:8] def addnet_hash_safetensors(b): """New model hash used by sd-webui-additional-networks for .safetensors format files""" hash_sha256 = hashlib.sha256() blksize = 1024 * 1024 b.seek(0) header = b.read(8) n = int.from_bytes(header, "little") offset = n + 8 b.seek(offset) for chunk in iter(lambda: b.read(blksize), b""): hash_sha256.update(chunk) return hash_sha256.hexdigest() model_hash = addnet_hash_safetensors(b) legacy_hash = addnet_hash_legacy(b) return model_hash, legacy_hash