File size: 1,263 Bytes
7fd9b52 23ad039 7fd9b52 eba7946 1281c52 eba7946 7fd9b52 eba7946 7fd9b52 eba7946 ec99db5 eba7946 ec99db5 eba7946 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
library_name: transformers
tags:
- custom_generate
---
## Description
Example repository used to document `generate` from the hub. It is a simplified implementation of greedy decoding.
## Base model:
`Qwen/Qwen2.5-0.5B-Instruct`
## Model compatibility
Most models. More specifically, any `transformer` LLM/VLM trained for causal language modeling.
## Additional Arguments
`left_padding` (`int`, *optional*): number of padding tokens to add before the provided input
## Output Type changes
(none)
## Example usage
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
# There is a print message hardcoded in the custom generation method
gen_out = model.generate(**inputs, left_padding=5, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True)
print(tokenizer.batch_decode(gen_out)) # don't skip special tokens
#['<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>The quick brown fox jumps over the lazy dog.\n\nThe sentence "The quick']
```
|