Gausson commited on
Commit
a8c35dd
·
verified ·
1 Parent(s): 8140d19

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -324
README.md DELETED
@@ -1,324 +0,0 @@
1
- ## 1. Abstract
2
- `SepCache` is a simple yet effective, native sparse attention `Cache` class proposed in the [`SepLLM paper - ICML 2025`](https://icml.cc/virtual/2025/poster/45536) , which most closely aligns with the semantic distribution of natural language. In the training phase, `SepLLM` condenses the segment information into the KV of the separator that divides the segment. In the inference phase, the corresponding `SepCache` only needs to store the KVs of initial tokens, separator tokens, and recent tokens for generation.
3
-
4
- Notably, `SepCache` also delivers strong performance across many tasks in training-free scenarios. Moreover, `SepLLM` (or simply `SepCache`) is the **most suitable baseline method for sparse attention mechanisms and KV compression/management**, as it is the natively sparse attention mechanism that best aligns with the natural semantic distribution of language.
5
-
6
- See more details and advanced usage in https://github.com/HKUDS/SepLLM
7
-
8
- ![image](https://hackmd.io/_uploads/r1POJoR4yg.png)
9
-
10
- ## 2. Usage
11
-
12
- ### 2.1 Sample Base Model
13
-
14
- We recommend using models from the **Llama 3 series**. Our example model is based on `meta-llama/Meta-Llama-3-8B-Instruct`, for which we have already prepared a targeted `monkey patch`.
15
-
16
- For other models, using `SepCache` requires minor modifications to the corresponding `modeling_xxx.py` file or writing a **custom monkey patch**. These changes are **very simple** -- you only need to pass arguments like `input_ids` to the `update` function of `SepCache` when calling it.
17
-
18
- We will provide a detailed guide later on how to modify your `modeling_xxx.py` file or `monkey patch` file to adapt `SepCache` to any model.
19
-
20
- ### 2.2 Quick Start
21
-
22
- #### 2.2.1 Environment Setup
23
- You need to install `transformers>=4.53`, and we recommend using `lm_eval>=0.4.9` for running evaluations. We suggest managing your Python environment with `conda` for better dependency control.
24
-
25
- ```bash
26
- conda create -n sepcache python=3.10
27
- conda activate sepcache
28
- pip install transformers==4.53
29
- pip install lm_eval==0.4.9
30
- ```
31
- #### 2.2.2 A Simple Example
32
- You can use `SepCache` by specifying `custom_generate="transformers-community/sep_cache"` or `custom_generate="Gausson/sep_cache"` when calling the `generate` function. In our demo, we have already prepared sample monkey patching for the `Llama 3 series` models and provided some common parameters for initializing `SepCache`.
33
-
34
- ```python
35
- # requires `transformers>=4.53.0`
36
- from transformers import AutoModelForCausalLM, AutoTokenizer
37
-
38
- # Preparing model, tokenizer, and model inputs
39
- tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
40
- model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto")
41
-
42
-
43
- messages = [{"role": "user", "content": "Tell me a story about a cat."}]
44
- text = tokenizer.apply_chat_template(
45
- messages,
46
- tokenize=False,
47
- add_generation_prompt=True,
48
- enable_thinking=False
49
- )
50
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
51
-
52
-
53
- # Using SepCache for generation
54
- gen_out = model.generate(
55
- # usual `generate` arguments
56
- **model_inputs,
57
- do_sample=False,
58
- max_new_tokens=100,
59
- return_dict_in_generate=True,
60
- monkey_patch_verbose = True, # To see which functions are actually being monkey patched for `SepCache`.
61
-
62
- # Using SepCache
63
- custom_generate="transformers-community/sep_cache", ## Alternatively, you can use `Gausson/sep_cache`
64
- trust_remote_code=True,
65
-
66
- # SepCache arguments
67
- init_cache_size = 4,
68
- sep_cache_size = 128,
69
- local_size = 256,
70
- cache_size = 512,
71
- USE_MAX_SEP_CACHE = True,
72
- model_type = 'llama'
73
- )
74
-
75
- print(tokenizer.batch_decode(gen_out.sequences, skip_special_tokens=True))
76
- assert "sepcache" in str(type(gen_out.past_key_values)).lower()
77
- ```
78
-
79
- It is worth noting that you must specify the `separator_token_ids: List[int]` and `PADDING_ID: int` parameters for initializing `SepCache`. In the example above, we did not do this because, for convenience, in the demo above, we specified `model_type = "llama"`, in which case `separator_token_ids` and `PADDING_ID` will be automatically filled.
80
-
81
- However, when you use a tokenizer for a non-Llama 3 series model, you need to specify the specific values of `separator_token_ids` and `PADDING_ID` based on the tokenizer you are using. For example, the following example is based on the values obtained from a Llama 3 series tokenizer.
82
- ```python
83
- # Using SepCache for generation
84
- gen_out = model.generate(
85
- # usual `generate` arguments
86
- **model_inputs,
87
- do_sample=False,
88
- max_new_tokens=100,
89
- return_dict_in_generate=True,
90
- monkey_patch_verbose = True, # To see which functions are actually being monkey patched for `SepCache`.
91
-
92
- # Using SepCache
93
- custom_generate="transformers-community/sep_cache", ## Alternatively, you can use `Gausson/sep_cache`
94
- trust_remote_code=True,
95
-
96
- # SepCache arguments
97
- init_cache_size = 4,
98
- sep_cache_size = 128,
99
- local_size = 256,
100
- cache_size = 512,
101
- USE_MAX_SEP_CACHE = True,
102
- separator_token_ids = [128000, 13, 11, 30, 0, 26, 25, 198, 220, 662, 1174, 949, 758, 2652, 551, 720, 256,262],
103
- PADDING_ID = 128009
104
- )
105
- ```
106
-
107
-
108
- #### 2.2.3 Frequently-Used Parameters
109
-
110
- Below, we provide explanations and examples for the most commonly used parameters when initializing `SepCache`. These parameters can be passed through the `generate` function.
111
-
112
- ```
113
- `SepCache` stores the Key and Value states as lists of tensors, two lists for each layer. The expected shape for each tensor is
114
- `[batch_size, num_heads, seq_len, head_dim]`.
115
-
116
- Frequently-Used Parameters:
117
-
118
- `init_cache_size: Union[int, List]`:
119
- The maximum number of KVs to be stored for initial tokens.
120
- In the paper, the hyperparameter `a` is an abbreviated alias for `init_cache_size`.
121
-
122
- `sep_cache_size: Union[int, List]`:
123
- The maximum number of KVs to be stored for separator tokens.
124
- In the paper, the hyperparameter `s` is an abbreviated alias for `sep_cache_size`.
125
-
126
- `local_size: Union[int, List]`:
127
- The maximum number of KVs to be stored for local tokens (i.e., sliding window).
128
- In the paper, the hyperparameter `w` is an abbreviated alias for `local_size`.
129
-
130
- `cache_size: Union[int, List]`:
131
- The maximum number of KVs to be stored for all the tokens, i.e., the size for the whole KV cache.
132
- In the paper, the hyperparameter `c` is an abbreviated alias for `cache_size`.
133
-
134
- Concerning these four parameters above:
135
- When a list is passed (its length must be `layer_num`), it represents different values for each layer.
136
- When an integer is passed, it means the setting is the same for all layers.
137
-
138
-
139
- `USE_MAX_SEP_CACHE: bool`:
140
- If True, it means we only keep at most `sep_cache_size` seperators' KVs.
141
- If the number exceeds this limit, older separators' KVs will be discarded, keeping only the most recent `sep_cache_size` KVs.
142
- In the paper, the hyperparameter `s` is an abbreviated alias for `sep_cache_size`.
143
-
144
- `separator_token_ids: List[int]`:
145
- The token ids of the separator tokens for the current model's tokenizer.
146
- We have some examples, such as the Llama-3 series models, where setting `model_type='llama'` allows you
147
- to skip setting `separator_token_ids` and `PADDING_ID` (SepCache will auto-fill them).
148
-
149
- `PADDING_ID: int`:
150
- The token id of the padding token. You can just set `PADDING_ID` to the id of "<|endoftext|>" token of the tokenizer for the pretrained model.
151
- ```
152
- Important Note:
153
- - When `cache_size` and `local_size` are set to infinity (i.e., sufficiently large positive integers), and `USE_MAX_SEP_CACHE` is `False`, `SepCache` degenerates into a regular Cache.
154
- - You must always ensure that `init_cache_size` + `sep_cache_size` + `local_size` + `left_padding_offset` < `cache_size`. Here, `left_padding_offset` denotes the number of padding tokens in the record with the largest left paddings within a runtime batch. `left_padding_offset` can only be determined at runtime.
155
- - To guarantee the above inequality always holds during runtime, when setting, you can intentionally create a sufficient margin between both sides of the following inequality:
156
- `init_cache_size` + `sep_cache_size` + `local_size` < `cache_size`, i.e., `a`+`s`+`w`<`c` in the [SepLLM paper - ICML 2025](https://arxiv.org/abs/2412.12094) to leave room for `left_padding_offset`.
157
-
158
- **More Important Note: In practice, no need to do positional encoding (PE) shifting like [StreamingLLM](https://github.com/mit-han-lab/streaming-llm/) if the actual length does not exceed the pretrained max PE length (which applies to most downstream tasks.) . So, for most basic usages, just set `APPLY_PE_SHIFT=False` (`False` is also the default setting) and `APPLY_PES_INSIDE=False` for initialization.**
159
-
160
-
161
- #### 2.2.4 Update Function
162
- After initialization, another key point to note is that when using the `update` function of `SepCache` to update the **keys/values** and the **past token IDs** (which is necessary in SepCache), the current `input_ids` must also be provided.
163
- ```python
164
- key_states, value_states = past_key_values.update(
165
- key_states = key_states,
166
- value_states = value_states,
167
- input_ids = input_ids, ## required
168
- layer_idx = layer_idx,
169
- PREFILLING_FLAG = q_len > 1, ## `q_len` is the sequence length of the current `query_states`
170
- )
171
- ```
172
-
173
-
174
- #### 2.2.5 Monkey Patch Demo
175
- To adapt the `update` function of `SepCache` mentioned in [`2.2.4 Update Function`](#224-update-function), i.e., passing the current `input_ids` as a parameter to the `update` function. It is worth noting that during the prefilling stage, the shape of the input_ids tensor is `[batch_size, seq_len]`, while during the decoding stage of auto-regressive models, the shape of the `input_ids` tensor should be `[batch_size, 1]`.
176
-
177
-
178
- In our `custom_generate/generate.py` file, we provide the `monkey_patching` function, which works by replacing the `forward` function in all the related instances of the `XXXAttention` class (for example, in the Llama 3 series model, it would be `LlamaAttention`) with our customized forward function (specified by the `model_atten_forward` parameter of the `monkey_patching` function).
179
- ```python
180
- def monkey_patching(model_obj,
181
- model_atten_forward , ## The `forward` function used to patch.
182
- possible_inner_model_names: List[str] = ["model", "transformer", "gpt_neox"] , # In `XXXForCausalLM` class, the possible name of internal attribute for model. e.g., "model", "transformer", "gpt_neox", etc.
183
- possible_layers_names: List[str] = ["layers", "h" ], # In `XXXModel` class, the possible name of internal attribute for decoder layers, e.g., "layers", "h", etc.
184
- atten_attr_name_pattern_list: List[str] = ["attention", "self_attn"], # In `XXXDecoderLayer` class, the possible name of internal attribute for self-attention, e.g., "attention", "self_attn", etc.
185
- atten_attr_name_pattern_exclude: List[str] = ["norm", "layer"], # In `XXXDecoderLayer` class, the impossible name patterns (i.e., the patterns to be excluded) of internal attribute for self-attention module class, e.g., "norm" , etc. Sometimes, there will be some attributes like "post_attention_norm" and we do not want modify the `forward` function of it - we want to modify the `forward` function of `XXXAttention`. So, we need to exclude attribute name patterns like "norm" to accurately find the correct "forward" function to replace.
186
- verbose = True):
187
-
188
- """
189
- This `monkey_patching` function is to
190
- - find the `forward` function of the `XXXAttention` class.
191
- - replace all the related `forward` functions of the instances of `XXXAttention` class with `model_atten_forward`.
192
- """
193
-
194
- ## To avoid the argument check failure, i.e., let "sepllm_kwargs" pass the check.
195
- transformers.generation.GenerationMixin._validate_model_kwargs = _validate_model_kwargs
196
-
197
- ## Get inner model obj
198
- inner_model_type = PreTrainedModel
199
- inner_model = find_inner_attribute(model_obj, possible_inner_model_names, inner_model_type)
200
-
201
- ## Get the decoder layers (`nn.ModuleList`) obj
202
- layers_type = nn.ModuleList
203
- model_layers = find_inner_attribute(inner_model, possible_layers_names, layers_type)
204
-
205
- ## Replace all the related `forward` functions of XXXAttention class's instances.
206
- for i, decoder_layer in enumerate(model_layers):
207
- self_attn_module = find_attribute_name(decoder_layer, atten_attr_name_pattern_list, atten_attr_name_pattern_exclude, nn.Module)
208
- result = monkey_patch_by_class_path(self_attn_module, model_atten_forward)
209
- if verbose:
210
- decoder_class_name = get_importable_class_path(decoder_layer)
211
- print(f"For Layer {i}'s `{decoder_class_name}`: {result}")
212
-
213
- return model_layers
214
- ```
215
-
216
- The `monkey_patching` function primarily does three things:
217
- - Precisely locate the `forward` function of all instances of the `XXXAttention` class.
218
- - Replace the `forward` function with the `model_atten_forward` function you provide.
219
- - Return the corresponding properties of the decoder layers found during the process, typically of type `nn.ModuleList`. This return value (`model_layers`) is only used to determine the number of layers in the current model later on (obtained by `len(model_layers)`).
220
-
221
- In addition, the `monkey_patching` function replaces `transformers.generation.GenerationMixin._validate_model_kwargs` with our `_validate_model_kwargs` to bypass some parameter checks, as we will provide an additional `sepllm_kwargs` parameter to wrap the `input_ids` for eventual transmission to the `SepCache` `update` function.
222
-
223
-
224
- **Please ensure that the `monkey_patching` function accurately locates and replaces the `forward` function of the `XXXAttention` class. The current `monkey_patching` is designed for the `Llama 3 series` models. For other models, you need to appropriately modify `monkey_patching` to ensure its correctness of targeting and replacement !** You can monitor the monkey patching process by setting `verbose=True` in the `monkey_patching` function (or, `monkey_patch_verbose = True` for the `generate` function.)
225
-
226
-
227
- ```python
228
- def truncate_input_ids_4_autoregression(input_ids, key_states):
229
- if input_ids.shape[-1] != key_states.shape[-2]:
230
- assert input_ids.shape[-1] >= key_states.shape[-2]
231
- truncated_input_ids = input_ids[..., -key_states.shape[-2]: ]
232
- return truncated_input_ids
233
- else:
234
- return input_ids
235
- ```
236
- The `truncate_input_ids_4_autoregression` function in the `custom_generate/generate.py` file is used to shape the `input_ids` tensor to `[batch_size, 1]` during decoding.
237
-
238
- #### 2.2.5 Downstream Task Evaluation
239
- We recommend using `lm_eval==0.4.9` for downstream task evaluation. You can pass model-related parameters via `--model_args` and generation-related parameters (including those required for initializing `SepCache`) via `--gen_kwargs`. Notably, you typically need to pass a `list` to `separator_token_ids` using a string format like `"id1;id2;id3"` (as shown in the example below).
240
- ```bash
241
- lm_eval --model hf \
242
- --model_args pretrained=meta-llama/Meta-Llama-3-8B-Instruct,attn_implementation=flash_attention_2 \
243
- --tasks gsm8k_cot \
244
- --gen_kwargs custom_generate=transformers-community/sep_cache,trust_remote_code=True,monkey_patch_verbose=True,separator_token_ids="128000;13;11;30;0;26;25;198;220;662;1174;949;758;2652;551;720;256;262",PADDING_ID=128009\
245
- --device cuda:0\
246
- --batch_size 80 2>&1 | tee log.txt
247
- ```
248
- Note: `SepCache` is typically used in combination with `Flash Attention` to maximize generation efficiency.
249
-
250
- #### 2.2.5 The Detailed Signature of `generate` Function
251
- Here is the detailed signature of our customized `generate` function for `SepCache` in `custom_generate/generate.py` file:
252
-
253
- ```python
254
- def generate(model,
255
- ## For SepCache
256
- init_cache_size: Union[int, List] = 4,
257
- sep_cache_size: Union[int, List] = 128,
258
- local_size: Union[int, List]=256,
259
- cache_size: Union[int, List]=512,
260
- SEP_ACCUMULATION: bool = True,
261
- USE_MAX_SEP_CACHE: bool = False,
262
- SEP_PADDING_IN_BATCH: bool = False,
263
- separator_token_ids: List[int] = None, ## required for initialization if `model_type` is not provided.
264
- PADDING_ID: int = None, ## required for initialization if `model_type` is not provided.
265
-
266
- ## For inheritance & initialization states
267
- past_tok_ids: List[torch.Tensor] = None, ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache.
268
- key_cache: List[torch.Tensor] = None,
269
- value_cache: List[torch.Tensor] = None,
270
-
271
- ## For debugging
272
- PRINT_KV_RATIO_INSIDE: bool = False,
273
- print_KV_inside_per_steps: int = 1000,
274
- _seen_tokens: int = 0,
275
- _kept_kv_ratio: List[Tuple[int]] = None,
276
-
277
- ### For positional encoding shifting
278
- APPLY_PE_SHIFT: bool = False,
279
- APPLY_PES_INSIDE: bool = False,
280
- _shifted_position_ids: List[torch.Tensor] = None,
281
- _rope_unsqueeze_dim: int = 1, ## The unsqueeze_dim when applying RoPE.
282
- _rope_seq_dim: int=1, ## The seq_len dimension for the `cos` or `sin` tensors.
283
- pe_scaling_factor:float = 1.0,
284
- pe_dim:int=128, ## The number of dims for positional encoding. Typically, just set the `head_dim` to this.
285
- max_position_embeddings: int = 8192,
286
- base: int=10000, ## The base for RoPE.
287
-
288
- ## For basic transformer architecture
289
- k_seq_dim: int=2, ## The dimension for seq_len in key tensors
290
- v_seq_dim: int=2, ## The dimension for seq_len in value tensors
291
- layer_num: int = None, ## required for initialization
292
-
293
- model_type: str = 'llama', ## The model type for running the example. choose from ['llama', 'pythia','falcon'].
294
- device = None,
295
-
296
- ## For verbosity of monkey patching
297
- monkey_patch_verbose: bool = False,
298
-
299
- **kwargs
300
- ):
301
- ...
302
- ```
303
-
304
- ### 3. Adaptation for Other Models
305
-
306
- Adapting `SepCache` to various models is simple - two approaches:
307
-
308
-
309
- #### 3.1 Method 1 - Monkey Patching
310
- - Modify the `monkey_patching` function to correctly locate and target the `forward` function of your model's `XXXAttention` class (e.g., `LlamaAttention` for Llame 3).
311
- - Write your custom `model_atten_forward` function and use `monkey_patching` to replace the `forward` function of all `XXXAttention` class instances. The key modification is passing `input_ids` to `SepCache`'s `update` function.
312
-
313
- #### 3.2 Method 2 - Direct Code Modification (Recommended for Simplicity)
314
- Simply edit your `modeling_xxx.py` file to implement:
315
-
316
- - Initialize `past_key_values` as a `SepCache` instance at the appropriate location (e.g., in `XXXForCausalLM` or `XXXModel` class' `forward` function).
317
- - Modify the `forward` function of the `XXXAttention` class to pass `input_ids` to `SepCache`'s `update` function.
318
-
319
- #### 3.3 Important Note
320
- The shape of `input_ids` is `[batch_size, seq_len]` during prefilling, and `[batch_size, 1]` during generation.
321
-
322
- ## Other Advanced Usage
323
-
324
- Please refer to https://github.com/HKUDS/SepLLM, in which there are detailed explanations and examples.