#!/usr/bin/env python3 import os import time import math import pickle from contextlib import nullcontext # note from ag: you may need to manually change the name of the trained model to match the name expected in the test.py chat.py and other scripts, also really impressive work here. import numpy as np import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.distributed import init_process_group, destroy_process_group import tiktoken from rich.traceback import install install() from model import GPTConfig, GPT # ------------------------------------------------------------------------------- # SPECIAL TOKENS for tokenizer (edit here as needed) SPECIAL_TOKENS = {'<|im_start|>', '<|im_end|>', '<|system|>', '<|user|>', '<|assistant|>', "<|im_start|>", "<|endoftext|>", "<|endofprompt|>"} print(f"ℹ️ Using special tokens: {SPECIAL_TOKENS}") # ------------------------------------------------------------------------------- # DEFAULT CONFIG — override via CLI or `configurator.py` out_dir = 'out' eval_interval = 95 log_interval = 1 eval_iters = 95 eval_only = False # if True, exit after first eval always_save_checkpoint = True # forces save every eval init_from = 'resume' # 'scratch' | 'resume' | 'gpt2*' wandb_log = False wandb_project = 'owt' wandb_run_name= 'run' + str(time.time()) # Data / Tokenization dataset = 'mydata' # subfolder under data/ data_file = 'lmsys_chat_1m.txt' tokenizer_name = 'cl100k_base' token_dtype = 'uint32' # must hold up to tokenizer.n_vocab # Model architecture n_layer = 1 # reduced to 3 layers n_head = 16 # keep heads high for representation capacity n_embd = 1024 # increased from 1280 → 1024 for stability and efficiency dropout = 0.05 # lower dropout since underfitting may occur bias = True # Optimizer learning_rate = 3e-4 max_iters = 20000 weight_decay = 0.05 # use 0.1 if batch size is large beta1 = 0.9 beta2 = 0.98 grad_clip = 1.0 # LR schedule decay_lr = True warmup_iters = 100 # faster warmup for shallow models lr_decay_iters = 10000 # align with max_iters for sharper decay min_lr = 1e-5 # Batch & block sizes batch_size = 4 # increase batch size if GPU RAM allows gradient_accumulation_steps = 5 * 4 # adjust accordingly to match effective batch size block_size = 1024 # keep same for compatibility # DDP backend = 'nccl' # Precision / compilation device = 'cuda' dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' compile = False # set to True on Linux with Triton installed # Checkpointing save_interval = 200 # also save every N steps checkpoint_limit = None # keep only last N checkpoints (None == keep all) # ------------------------------------------------------------------------------- # allow overrides via CLI / configurator.py config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int,float,bool,str,list))] exec(open('configurator.py').read()) # override from CLI or config config = {k: globals()[k] for k in config_keys} # ----------------------------------------------------------------------------- # AUTO-PREPROCESSING: data.txt → train.bin / val.bin + meta.pkl data_dir = os.path.join('data', dataset) train_bin_path = os.path.join(data_dir, 'train.bin') val_bin_path = os.path.join(data_dir, 'val.bin') meta_path = os.path.join(data_dir, 'meta.pkl') dtype_token = np.dtype(token_dtype) if not (os.path.exists(train_bin_path) and os.path.exists(val_bin_path) and os.path.exists(meta_path)): print(f"ℹ️ Preprocessing raw text from {data_file} ...") raw_text = open(data_file, 'r', encoding='utf-8').read() enc = tiktoken.get_encoding(tokenizer_name) encode = enc.encode vocab_size= enc.n_vocab # ensure dtype can hold vocab_size if np.issubdtype(dtype_token, np.integer): info = np.iinfo(dtype_token) if info.max < vocab_size: raise ValueError(f"token_dtype={token_dtype} max={info.max} < vocab_size={vocab_size}") tokens = np.array(encode(raw_text, allowed_special=SPECIAL_TOKENS), dtype=dtype_token) n = tokens.shape[0] split = int(0.9 * n) train_tokens = tokens[:split] val_tokens = tokens[split:] os.makedirs(data_dir, exist_ok=True) train_tokens.tofile(train_bin_path) val_tokens.tofile(val_bin_path) with open(meta_path, 'wb') as f: pickle.dump({ 'vocab_size': vocab_size, 'tokenizer': tokenizer_name, 'token_dtype': token_dtype, 'special_tokens': SPECIAL_TOKENS, }, f) print(f"✅ Wrote {train_bin_path} ({train_tokens.nbytes} bytes), " f"{val_bin_path} ({val_tokens.nbytes} bytes), and {meta_path}") # ----------------------------------------------------------------------------- # DDP or single-GPU ddp = int(os.environ.get('RANK', -1)) != -1 if ddp: init_process_group(backend=backend) ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) ddp_world_size = int(os.environ['WORLD_SIZE']) device = f'cuda:{ddp_local_rank}' torch.cuda.set_device(device) master_process = (ddp_rank == 0) seed_offset = ddp_rank assert gradient_accumulation_steps % ddp_world_size == 0 gradient_accumulation_steps //= ddp_world_size else: master_process = True seed_offset = 0 ddp_world_size = 1 tokens_per_iter = gradient_accumulation_steps * ddp_world_size * batch_size * block_size print(f"ℹ️ tokens per iteration = {tokens_per_iter:,}") if master_process: os.makedirs(out_dir, exist_ok=True) torch.manual_seed(1337 + seed_offset) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True device_type = 'cuda' if 'cuda' in device else 'cpu' ptdtype = {'float32':torch.float32, 'bfloat16':torch.bfloat16, 'float16':torch.float16}[dtype] ctx = nullcontext() if device_type=='cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) # ----------------------------------------------------------------------------- # BATCH LOADER def get_batch(split): data = np.memmap(os.path.join(data_dir, f'{split}.bin'), dtype=dtype_token, mode='r') ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([torch.from_numpy(data[i:i+block_size].astype(np.int64)) for i in ix]) y = torch.stack([torch.from_numpy(data[i+1:i+1+block_size].astype(np.int64)) for i in ix]) if device_type == 'cuda': x,y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True) else: x,y = x.to(device), y.to(device) return x, y # ----------------------------------------------------------------------------- # MODEL INIT / RESUME iter_num = 0 best_val_loss = 1e9 meta = pickle.load(open(meta_path,'rb')) vocab_size = meta['vocab_size'] model_args = dict( n_layer = n_layer, n_head = n_head, n_embd = n_embd, block_size = block_size, bias = bias, vocab_size = vocab_size, dropout = dropout, ) if init_from == 'scratch': print("ℹ️ Initializing new model from scratch") model = GPT(GPTConfig(**model_args)) elif init_from == 'resume': print(f"ℹ️ Resuming from {out_dir}") ckpt = torch.load(os.path.join(out_dir,'ckpt.pt'), map_location=device) for k in ['n_layer','n_head','n_embd','block_size','bias','vocab_size']: model_args[k] = ckpt['model_args'][k] model = GPT(GPTConfig(**model_args)) state = ckpt['model'] for key in list(state.keys()): if key.startswith('_orig_mod.'): state[key[len('_orig_mod.'):]] = state.pop(key) model.load_state_dict(state) iter_num = ckpt['iter_num'] best_val_loss = ckpt['best_val_loss'] elif init_from.startswith('gpt2'): print(f"ℹ️ Initializing from OpenAI GPT-2 weights: {init_from}") override = dict(dropout=dropout) model = GPT.from_pretrained(init_from, override) for k in ['n_layer','n_head','n_embd','block_size','bias','vocab_size']: model_args[k] = getattr(model.config, k) if block_size < model.config.block_size: model.crop_block_size(block_size) model_args['block_size'] = block_size model.to(device) scaler = torch.cuda.amp.GradScaler(enabled=(dtype=='float16')) optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1,beta2), device_type) if init_from == 'resume': optimizer.load_state_dict(ckpt['optimizer']) # ----------------------------------------------------------------------------- # COMPILE & DDP WRAP if compile: print("ℹ️ Compiling the model...") model = torch.compile(model) if ddp: model = DDP(model, device_ids=[ddp_local_rank]) raw_model = model.module if ddp else model # ----------------------------------------------------------------------------- # INITIAL CHECKPOINT at step 0 if master_process: ckpt = { 'model': raw_model.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, 'best_val_loss': best_val_loss, 'config': config, } ckpt_path = os.path.join(out_dir, f'ckpt_{iter_num:06d}.pt') print(f"💾 Saving initial checkpoint to {ckpt_path}") torch.save(ckpt, ckpt_path) # ----------------------------------------------------------------------------- # LOSS ESTIMATE @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ('train','val'): losses = torch.zeros(eval_iters) for k in range(eval_iters): X,Y = get_batch(split) with ctx: _, loss = model(X,Y) losses[k] = loss.item() out[split] = losses.mean().item() model.train() return out def get_lr(it): if it < warmup_iters: return learning_rate * (it+1) / (warmup_iters+1) if it > lr_decay_iters: return min_lr decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) coeff = 0.5 * (1 + math.cos(math.pi * decay_ratio)) return min_lr + coeff * (learning_rate - min_lr) if wandb_log and master_process: import wandb wandb.init(project=wandb_project, name=wandb_run_name, config=config) # ----------------------------------------------------------------------------- # TRAINING LOOP X, Y = get_batch('train') t0 = time.time() local_iter = 0 while True: lr = get_lr(iter_num) if decay_lr else learning_rate for pg in optimizer.param_groups: pg['lr'] = lr if iter_num % eval_interval == 0 and master_process: losses = estimate_loss() print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") if wandb_log: wandb.log({"iter":iter_num, "train/loss":losses['train'], "val/loss":losses['val'], "lr":lr}) should_save = ( losses['val'] < best_val_loss or always_save_checkpoint or (iter_num % save_interval == 0) ) if should_save and iter_num > 0: best_val_loss = min(best_val_loss, losses['val']) ckpt = { 'model': raw_model.state_dict(), 'optimizer': optimizer.state_dict(), 'model_args': model_args, 'iter_num': iter_num, 'best_val_loss': best_val_loss, 'config': config, } ckpt_path = os.path.join(out_dir, f'ckpt_{iter_num:06d}.pt') print(f"💾 Saving checkpoint to {ckpt_path}") torch.save(ckpt, ckpt_path) if checkpoint_limit is not None: all_ckpts = sorted(f for f in os.listdir(out_dir) if f.startswith('ckpt_') and f.endswith('.pt')) for old in all_ckpts[:-checkpoint_limit]: os.remove(os.path.join(out_dir, old)) if iter_num == 0 and eval_only: break for micro in range(gradient_accumulation_steps): if ddp: model.require_backward_grad_sync = (micro == gradient_accumulation_steps - 1) with ctx: logits, loss = model(X, Y) loss = loss / gradient_accumulation_steps X, Y = get_batch('train') scaler.scale(loss).backward() if grad_clip != 0.0: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) dt = time.time() - t0 t0 = time.time() if iter_num % log_interval == 0 and master_process: lossf = loss.item() * gradient_accumulation_steps if local_iter >= 5: mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt) print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {mfu*100:.2f}%") else: print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms") iter_num += 1 local_iter += 1 if iter_num > max_iters: break if ddp: destroy_process_group()