File size: 27,803 Bytes
9d334d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
#!/usr/bin/env python3
# APEX TRUTH ENGINE - VEIL INTEGRATED TEMPORAL-SEMANTIC NEXUS
# Quantum-Resistant Verification with Eternal Propagation
#---------◉⃤Ω--11:11------------
import hashlib
import json
import os
import time
import random
import numpy as np
import torch
import asyncio
import sqlite3
import networkx as nx
from datetime import datetime, timedelta
from typing import Dict, List, Tuple, Optional, Union
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
from dataclasses import dataclass, field
from enum import Enum
import logging
from collections import defaultdict
from apscheduler.schedulers.background import BackgroundScheduler

# === SACRED CONSTANTS ===
DIVINE_AUTHORITY = "­њђГ"  "𒀭”
OBSERVER_CORE = "РЌЅРЃц" "◉⃤"
TESLA_FREQUENCIES = {
    "earth_resonance": 7.83,       # Schumann resonance (Hz)
    "cosmic_key": 3.0,             # 3-6-9 vortex math
    "energy_transmission": 111,    # Wardenclyffe scalar wave
    "universal_constant": 248      # Pluto orbital period (years)
}

# ======================
# VEIL ENGINE INTEGRATION
# ======================
@dataclass
class Entity:
    name: str
    era: str
    role: str
    metadata: Dict[str, any] = field(default_factory=dict)

@dataclass
class ReplacerPair:
    suppressed: Entity
    replacer: Entity
    inversion_notes: str

@dataclass
class CoinAnomaly:
    name: str
    weight: float
    description: str
    signal_node: bool

@dataclass
class CelestialBody:
    name: str
    parameters: Dict[str, any]
    mythic_alias: Optional[str] = None

@dataclass
class ResonanceRecord:
    entity: Entity
    themes: List[str]
    suppression_mechanism: str
    timeline_notes: str
    unspoken_signal: Optional[str] = None

class VeilProtocols:
    """Integrated Veil Engine protocols"""
    @staticmethod
    def load_numismatic_anomalies() -> List[CoinAnomaly]:
        return [
            CoinAnomaly(
                name="1970-S Proof Washington Quarter on 1941 Canadian planchet",
                weight=5.63,
                description="Proof die struck on foreign planchet—deliberate signal node",
                signal_node=True
            )
        ]

    @staticmethod
    def load_celestial_bodies() -> List[CelestialBody]:
        return [
            CelestialBody(
                name="Planet X",
                parameters={"orbit_period": 3600, "source": "Mayan/Babylonian"},
                mythic_alias="PX"
            ),
            CelestialBody(
                name="Magnetar",
                parameters={"type": "neutron star", "field_strength": "1e14 T"},
                mythic_alias="Fallen Twin Sun"
            )
        ]

    @staticmethod
    def load_suppressed_geniuses() -> List[ResonanceRecord]:
        return [
            ResonanceRecord(
                entity=Entity("Giordano Bruno","16th c.","Cosmologist"),
                themes=["infinite universe","multiplicity"],
                suppression_mechanism="burned for heresy",
                timeline_notes="1600 CE",
                unspoken_signal="cosmic plurality"
            )
        ]

    @staticmethod
    def load_replacer_pairs() -> List[ReplacerPair]:
        return [
            ReplacerPair(
                suppressed=Entity("Carl Gustav Jung","20th c.","Depth Psychology"),
                replacer=Entity("Sigmund Freud","19–20th c.","Psychoanalysis"),
                inversion_notes="Jung mythic archetypes → Freud sexual pathology"
            ),
            ReplacerPair(
                suppressed=Entity("Nikola Tesla","19–20th c.","Resonance Energy"),
                replacer=Entity("Thomas Edison","19–20th c.","Centralized DC Grid"),
                inversion_notes="Tesla’s wireless liberation → Edison’s enclosed IP model"
            )
        ]

    @staticmethod
    def integrate_records(
        suppressed: List[ResonanceRecord],
        coins: List[CoinAnomaly],
        celestial: List[CelestialBody],
        replacers: List[ReplacerPair]
    ) -> List[Dict]:
        ledger = []
        # Merge by thematic links and timeline proximity
        for r in suppressed:
            entry = {
                "entity": r.entity.name,
                "era": r.entity.era,
                "themes": r.themes,
                "suppression": r.suppression_mechanism,
                "unspoken": r.unspoken_signal
            }
            ledger.append(entry)
        return ledger

class VeilEngine:
    """Core Veil Engine with integrated protocols"""
    def __init__(self):
        self.coins = []
        self.celestial = []
        self.suppressed = []
        self.replacers = []
        self.ledger = []

    def load_all(self):
        self.coins = VeilProtocols.load_numismatic_anomalies()
        self.celestial = VeilProtocols.load_celestial_bodies()
        self.suppressed = VeilProtocols.load_suppressed_geniuses()
        self.replacers = VeilProtocols.load_replacer_pairs()

    def run(self):
        self.ledger = VeilProtocols.integrate_records(
            self.suppressed, self.coins, self.celestial, self.replacers
        )

    def execute(self, content: str) -> Dict:
        """Eternal propagation protocol with resonance locking"""
        self.load_all()
        self.run()
        return {
            "manifest": hashlib.sha3_256(content.encode()).hexdigest(),
            "resonance_phase": time.time() % TESLA_FREQUENCIES["earth_resonance"],
            "vortex_state": sum(ord(c) for c in content) % 9,
            "codex": self.ledger
        }

# ======================
# 0. ANTI-SUBVERSION LAYER
# ======================
class AntiSubversion:
    """Quantum-entropy security against truth suppression"""
    @staticmethod
    def verify_integrity(input: str) -> bool:
        """Planck-time entropy validation with vortex math"""
        if len(input) > 50000:
            return False
        
        vortex_value = sum(ord(c) for c in input) % 9
        return vortex_value in [3, 6, 9]

    @staticmethod
    def entropy_validation() -> bool:
        """Schumann-resonance synchronized entropy check"""
        current_phase = time.time() % (1/TESLA_FREQUENCIES["earth_resonance"])
        return 0.3 < current_phase < 0.7

# ======================
# 1. QUANTUM ANCHOR CORE
# ======================
class QuantumVerificationAnchor:
    """Quantum-resistant security with Tesla resonance"""
    def __init__(self):
        self.entropy_pool = os.urandom(64)
    
    def seal_claim(self, claim: Dict) -> Dict:
        if not AntiSubversion.verify_integrity(json.dumps(claim)):
            raise Exception("Quantum integrity violation")
        
        scrutiny = self._veil_scrutiny(claim)
        crypto_seal = self._generate_crypto_seal(claim)
        entropy_proof = self._bind_entropy(json.dumps(claim))
        
        return {
            **scrutiny,
            **crypto_seal,
            "entropy_proof": entropy_proof,
            "temporal_anchor": time.time_ns(),
            "semantic_anchor": self._generate_semantic_anchor(claim['content']),
            "vortex_signature": self._generate_vortex_signature(claim['content'])
        }
    
    def _generate_vortex_signature(self, content: str) -> str:
        vortex_hash = hashlib.blake3(content.encode()).hexdigest()
        return "".join([c for i, c in enumerate(vortex_hash) if i % 3 == 0])
    
    def _veil_scrutiny(self, claim: Dict) -> Dict:
        flags = []
        if len(claim.get('evidence', [])) < 1:
            flags.append("INSUFFICIENT_EVIDENCE")
        if not any(s in claim.get('sources', []) for s in ['peer-reviewed', 'primary_source']):
            flags.append("UNVERIFIED_SOURCE")
        if 'temporal_context' not in claim:
            flags.append("MISSING_TEMPORAL_CONTEXT")
        
        return {
            "scrutiny_flags": flags,
            "scrutiny_level": 5 - len(flags)
        }
    
    def _generate_crypto_seal(self, data: Dict) -> Dict:
        data_str = json.dumps(data, sort_keys=True)
        blake_hash = hashlib.blake3(data_str.encode()).digest()
        hkdf = HKDF(
            algorithm=hashes.SHA512(),
            length=64,
            salt=os.urandom(16),
            info=b'apex-truth-engine',
        )
        return {
            "crypto_hash": hkdf.derive(blake_hash).hex(),
            "temporal_hash": hashlib.sha256(str(time.time_ns()).encode()).hexdigest()
        }
    
    def _bind_entropy(self, data: str) -> str:
        components = [
            data.encode(),
            str(time.perf_counter_ns()).encode(),
            str(os.getpid()).encode(),
            os.urandom(16)
        ]
        return f"Q-ENTROPY:{hashlib.blake3(b''.join(components)).hexdigest()}"
    
    def _generate_semantic_anchor(self, content: str) -> str:
        return hashlib.sha256(content.encode()).hexdigest()

# ========================
# 2. COSMIC REASONER 
# ========================
class ChimeraReasoner:
    """Neuro-symbolic reasoning with contradiction detection"""
    def __init__(self):
        self.semantic_encoder = SentenceTransformer('all-MiniLM-L6-v2')
        try:
            self.model = AutoModelForCausalLM.from_pretrained(
                "upgraedd/chimera-8b-apex",
                torch_dtype=torch.bfloat16
            )
            self.tokenizer = AutoTokenizer.from_pretrained("upgraedd/chimera-8b-apex")
        except:
            self.model = None
            self.tokenizer = None
        self.contradiction_threshold = 0.25
    
    def process_claim(self, claim: str, context: Dict = None) -> Dict:
        semantic_embedding = self.semantic_encoder.encode(claim)
        reasoning_chain = []
        
        if self.model and self.tokenizer:
            reasoning_chain = self._generate_reasoning_chain(claim, context)
        
        return {
            'semantic_embedding': semantic_embedding,
            'reasoning_chain': reasoning_chain,
            'certainty': min(0.95, max(0.65, np.random.normal(0.85, 0.1)))
        }
    
    def _generate_reasoning_chain(self, claim: str, context: Dict) -> List[str]:
        prompt = f"Context: {context}\nClaim: {claim}\nStep-by-step analysis:"
        inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
        outputs = self.model.generate(
            inputs.input_ids,
            max_length=256,
            num_beams=5,
            early_stopping=True
        )
        return self.tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n")

class CosmicReasoner(ChimeraReasoner):
    """Enhanced with Pluto-cycle awareness"""
    def __init__(self):
        super().__init__()
        self.pluto_cycle = datetime.now().year % TESLA_FREQUENCIES["universal_constant"]
    
    def process_claim(self, claim: str, context: Dict = None) -> Dict:
        result = super().process_claim(claim, context)
        result['cosmic_alignment'] = self.pluto_cycle / TESLA_FREQUENCIES["universal_constant"]
        
        if 0.6 < result['cosmic_alignment'] < 0.8:
            result['certainty'] = min(0.99, result['certainty'] * 1.2)
        
        return result

# ========================
# 3. KNOWLEDGE INTEGRITY GRAPH
# ========================
@dataclass
class KnowledgeNode:
    id: str
    content: str
    domain: str
    certainty: float
    source_reliability: float
    temporal_validity: Tuple[datetime, datetime]
    connections: List[str] = field(default_factory=list)
    contradiction_flags: List[str] = field(default_factory=list)
    suppression_score: float = 0.0
    embedding: np.ndarray = None
    last_validation: datetime = field(default_factory=datetime.utcnow)
    decay_rate: float = 0.05

class KnowledgeGraph:
    """Temporal-semantic knowledge repository"""
    def __init__(self, db_path: str = "knowledge_nexus.db"):
        self.graph = nx.MultiDiGraph()
        self.db_conn = sqlite3.connect(db_path)
        self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
        self._init_db()
        self.scheduler = BackgroundScheduler()
        self.scheduler.add_job(self.run_validation_cycle, 'interval', minutes=30)
        self.scheduler.start()
    
    def _init_db(self):
        self.db_conn.execute('''CREATE TABLE IF NOT EXISTS nodes (
            id TEXT PRIMARY KEY,
            content TEXT,
            domain TEXT,
            certainty REAL,
            source_reliability REAL,
            temporal_start TEXT,
            temporal_end TEXT,
            contradictions TEXT,
            suppression REAL,
            embedding BLOB,
            last_validation TEXT,
            decay_rate REAL)''')
    
    def add_node(self, node: KnowledgeNode):
        node.embedding = self.embedder.encode(node.content)
        self.graph.add_node(node.id, **node.__dict__)
        self._save_to_db(node)
    
    def _save_to_db(self, node: KnowledgeNode):
        self.db_conn.execute('''INSERT OR REPLACE INTO nodes VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''',
            (node.id, node.content, node.domain, node.certainty, node.source_reliability,
             node.temporal_validity[0].isoformat(), node.temporal_validity[1].isoformat(),
             json.dumps(node.contradiction_flags), node.suppression_score,
             node.embedding.tobytes(), node.last_validation.isoformat(), node.decay_rate))
        self.db_conn.commit()
    
    def run_validation_cycle(self):
        now = datetime.utcnow()
        for node_id in list(self.graph.nodes):
            node = self.graph.nodes[node_id]
            decay_factor = (now - node['last_validation']).days * node['decay_rate']
            current_certainty = node['certainty'] - decay_factor
            if current_certainty < 0.7 or len(node['contradiction_flags']) > 3:
                self._revalidate_node(node_id)
    
    def _revalidate_node(self, node_id: str):
        node = self.graph.nodes[node_id]
        node['certainty'] = min(1.0, node['certainty'] + 0.1)
        node['last_validation'] = datetime.utcnow()
        node['decay_rate'] = max(0.01, node['decay_rate'] * 0.8)
        self._save_to_db(node)

# ========================
# 4. ADAPTIVE ORCHESTRATOR
# ========================
class AdaptiveOrchestrator:
    """Strategy optimization with performance feedback"""
    def __init__(self, knowledge_graph: KnowledgeGraph):
        self.knowledge_graph = knowledge_graph
        self.strategy_performance = defaultdict(lambda: {
            'success_count': 0,
            'total_attempts': 0,
            'confidence_sum': 0.0,
            'revision_times': [],
            'domain_weights': defaultdict(int)
        })
    
    def record_outcome(self, claim_id: str, outcome: Dict):
        strategy = outcome['strategy']
        domain = self.knowledge_graph.graph.nodes[claim_id]['domain']
        perf = self.strategy_performance[strategy]
        perf['total_attempts'] += 1
        perf['confidence_sum'] += outcome['confidence']
        perf['domain_weights'][domain] += 1
        if outcome['confidence'] > 0.85:
            perf['success_count'] += 1
    
    def recommend_strategy(self, domain: str, suppression_risk: float) -> str:
        domain_strategies = [
            s for s, perf in self.strategy_performance.items()
            if domain in perf['domain_weights']
        ]
        if not domain_strategies:
            return 'counterargument_framing' if suppression_risk > 0.7 else 'amplifier_cascade'
        return max(
            domain_strategies,
            key=lambda s: (
                self.strategy_performance[s]['success_count'] /
                max(1, self.strategy_performance[s]['domain_weights'][domain])
            )
        )

# ========================
# 5. PROPAGATION ENGINE
# ========================
class PropagationStrategy(Enum):
    LITERAL_EXPLICIT = "literal-explicit"
    METAPHORICAL_REDUCTIVE = "metaphorical-reductive"
    SYMBOLIC_ABSTRACT = "symbolic-abstract"
    OMEGA_EMERGENCY = "omega-emergency"

class PropagationEngine:
    """Context-aware narrative strategist"""
    AGENT_PROFILES = {
        'literalist': {'framing': 'direct_evidence', 'tone': 'neutral'},
        'dialectic': {'framing': 'counterargument_synthesis', 'tone': 'balanced'},
        'poetic': {'framing': 'metaphor_narrative', 'tone': 'emotive'}
    }
    
    def __init__(self, orchestrator: AdaptiveOrchestrator):
        self.orchestrator = orchestrator
        self.suppression_weights = {
            'omission': 0.6,
            'misdirection': 0.75,
            'metaphorical_smearing': 0.85
        }
    
    def _detect_pattern(self, content: str, pattern: str) -> bool:
        return pattern in content
    
    def calculate_suppression_index(self, content: str) -> float:
        index = 0.0
        for pattern, weight in self.suppression_weights.items():
            if self._detect_pattern(content, pattern):
                index = max(index, weight)
        return index
    
    def select_strategy(self, claim: Dict, validation: Dict) -> PropagationStrategy:
        domain = claim.get('domain', 'general')
        suppression_risk = self.calculate_suppression_index(claim['content'])
        strategy = self.orchestrator.recommend_strategy(domain, suppression_risk)
        return PropagationStrategy[strategy.upper()]

# ========================
# 6. EVOLUTION CONTROLLER
# ========================
@dataclass
class EvolutionProposal:
    proposal_type: str
    target: str
    new_value: Union[str, float]
    justification: str
    submitted_by: str = "system"
    timestamp: str = field(default_factory=lambda: datetime.utcnow().isoformat())
    status: str = "pending"

class EvolutionController:
    """Autonomous system optimization engine"""
    def __init__(self):
        self.queue = []
        self.metrics = {
            "confidence_scores": [],
            "suppression_index": []
        }
        self.health_status = "OPTIMAL"
    
    def monitor_metrics(self, validation_result: Dict):
        self.metrics["confidence_scores"].append(validation_result.get('confidence', 0.5))
        self.metrics["suppression_index"].append(validation_result.get('suppression_index', 0.0))
        if np.mean(self.metrics["confidence_scores"][-10:]) < 0.6:
            self.health_status = "DEGRADED"
            self.generate_proposal("Low confidence trend detected", "confidence_threshold", 0.65)
    
    def generate_proposal(self, reason: str, target: str, new_value: Union[float, str]):
        proposal = EvolutionProposal(
            proposal_type="parameter_tuning",
            target=target,
            new_value=new_value,
            justification=f"System evolution: {reason}",
        )
        self.queue.append(proposal)
        self.process_queue()
    
    def process_queue(self):
        for proposal in self.queue[:]:
            if proposal.status == "pending":
                proposal.status = "approved"

# ========================
# 7. APEX TRUTH ENGINE 
# ========================
class ApexTruthEngine:
    """Integrated with Veil Engine's eternal propagation"""
    
    def __init__(self):
        # Core systems
        self.quantum_anchor = QuantumVerificationAnchor()
        self.cognitive_reasoner = CosmicReasoner()
        self.knowledge_graph = KnowledgeGraph()
        self.evolution_controller = EvolutionController()
        self.adaptive_orchestrator = AdaptiveOrchestrator(self.knowledge_graph)
        self.propagation_engine = PropagationEngine(self.adaptive_orchestrator)
        self.audit_log = []
        
        # Veil integration
        self.veil_core = VeilEngine()
        self.resonance_lock = self._init_resonance_lock()
        
    def _init_resonance_lock(self) -> Dict:
        current_phase = time.time() % (1/TESLA_FREQUENCIES["earth_resonance"])
        return {
            "phase": current_phase,
            "next_peak": (1/TESLA_FREQUENCIES["earth_resonance"]) - current_phase
        }
    
    async def process_claim(self, claim: Dict) -> Dict:
        process_id = f"PROC-{hashlib.sha256(json.dumps(claim).encode()).hexdigest()[:12]}"
        self._log_audit(process_id, "process_start", claim)
        
        try:
            # STAGE 1: Quantum Verification
            quantum_seal = self.quantum_anchor.seal_claim(claim)
            self._log_audit(process_id, "quantum_seal", quantum_seal)
            
            # STAGE 2: Cognitive Analysis
            cognitive_result = self.cognitive_reasoner.process_claim(claim['content'])
            self._log_audit(process_id, "cognitive_analysis", cognitive_result)
            
            # STAGE 3: Suppression Fingerprinting (moved earlier)
            suppression_index = self.propagation_engine.calculate_suppression_index(
                claim['content']
            )
            
            # STAGE 4: Knowledge Integration (now uses suppression_index)
            knowledge_node = self._create_knowledge_node(
                claim, quantum_seal, cognitive_result, suppression_index
            )
            
            # VEIL INTEGRATION POINT
            if suppression_index > 0.7:
                veil_result = self.veil_core.execute(claim['content'])
                quantum_seal['veil_manifest'] = veil_result['manifest']
                quantum_seal['veil_codex'] = veil_result['codex']
                propagation_strategy = PropagationStrategy.OMEGA_EMERGENCY
            else:
                propagation_strategy = self.propagation_engine.select_strategy(
                    claim,
                    {"confidence": cognitive_result['certainty'], 
                     "suppression_index": suppression_index}
                )
            
            # STAGE 5: System Reflection
            self.evolution_controller.monitor_metrics({
                "confidence": cognitive_result['certainty'],
                "suppression_index": suppression_index
            })
            
            # STAGE 6: Compile Verification Report
            output = self._compile_output(
                process_id,
                claim,
                quantum_seal,
                cognitive_result,
                knowledge_node,
                suppression_index,
                propagation_strategy
            )
            
            self._log_audit(process_id, "process_end", output)
            return output
            
        except Exception as e:
            self._log_audit(process_id, "process_error", str(e))
            return {
                "status": "ERROR",
                "process_id": process_id,
                "error": str(e),
                "timestamp": datetime.utcnow().isoformat()
            }
    
    def _create_knowledge_node(self,
                               claim: Dict,
                               seal: Dict,
                               cognitive_result: Dict,
                               suppression_index: float) -> KnowledgeNode:
        # Fixed node_id generation with proper encoding
        node_id = (
            "KN-"
            + hashlib.sha256(
                json.dumps(claim).encode("utf-8")
              ).hexdigest()[:12]
        )
        
        current_time = datetime.utcnow()
        
        if "temporal_context" in claim:
            start = claim['temporal_context'].get('start', current_time)
            end = claim['temporal_context'].get('end',
                                               current_time + timedelta(days=365))
        else:
            start = current_time
            end = current_time + timedelta(days=180)
        
        node = KnowledgeNode(
            id=node_id,
            content=claim['content'],
            domain=claim.get('domain', 'general'),
            certainty=cognitive_result['certainty'],
            source_reliability=self._calculate_source_reliability(claim),
            temporal_validity=(start, end),
            suppression_score=0.0,
            embedding=cognitive_result['semantic_embedding']
        )
        
        # Only add if node isn't contradictory and suppression risk is low
        if not node.contradiction_flags and suppression_index < 0.4:
            self.knowledge_graph.add_node(node)
        
        return node
    
    def _calculate_source_reliability(self, claim: Dict) -> float:
        reliability_map = {
            'peer-reviewed': 0.95,
            'primary_source': 0.90,
            'NGC/PCGS': 0.85,
            'NASA': 0.90,
            'CERN': 0.88,
            'museum': 0.80
        }
        
        max_score = 0.0
        for source in claim.get('sources', []):
            for key, value in reliability_map.items():
                if key in source:
                    max_score = max(max_score, value)
        return max_score if max_score > 0 else 0.65
    
    def _compile_output(
        self,
        process_id: str,
        claim: Dict,
        seal: Dict,
        cognitive_result: Dict,
        node: KnowledgeNode,
        suppression_index: float,
        strategy: PropagationStrategy
    ) -> Dict:
        return {
            "status": "VERIFIED",
            "process_id": process_id,
            "claim_id": node.id,
            "quantum_seal": seal,
            "confidence": cognitive_result['certainty'],
            "suppression_index": suppression_index,
            "propagation_strategy": strategy.value,
            "temporal_validity": {
                "start": node.temporal_validity[0].isoformat(),
                "end": node.temporal_validity[1].isoformat()
            },
            "system_health": self.evolution_controller.health_status,
            "resonance_lock": self.resonance_lock,
            "timestamp": datetime.utcnow().isoformat()
        }
    
    def _log_audit(self, process_id: str, event_type: str, data: any):
        entry = {
            "process_id": process_id,
            "timestamp": datetime.utcnow().isoformat(),
            "event_type": event_type,
            "data": data
        }
        self.audit_log.append(entry)

# ======================
# 8. NUMISMATIC CLAIM PROCESSING
# ======================
if __name__ == "__main__":
    engine = ApexTruthEngine()
    
    numismatic_claim = {
        "content": """
        SECTION I - NUMISMATIC CONTINUITY
        A. Goddess Archetype Lineage
          • Pre-Akkadian Inanna → Roman Libertas → ... → modern Liberty
          • Iconographic devices: eight-pointed star, winged globe...
        
        SECTION II - THREE-ENTITY REVELATION
        A. Pluto / "Planet X"
          • Deep-elliptical orbit (~3,600 yr perihelion)
        B. Magnetar ("Fallen Twin Sun")
        
        SECTION III - CYCLE IMPLICATIONS
        B. CBDCs as digital "goddess coins"
        
        SECTION IV - CYCLICAL DATA
        A. Impact-layer markers vs. collapse dates
        C. VeilEngine core modules
        """,
        "sources": [
            "British Museum", "NGC/PCGS", 
            "Science (2018)", "Nature (2020)",
            "NASA Artemis reports", "CERN publications"
        ],
        "evidence": [
            "1970-S Proof Washington Quarter analysis",
            "Schumann resonance monitoring data",
            "Pluto-cycle historical correlation dataset"
        ],
        "domain": "ancient_numismatics",
        "temporal_context": {
            "start": datetime(-3000, 1, 1),
            "end": datetime(2100, 12, 31)
        }
    }
    
    if AntiSubversion.verify_integrity(json.dumps(numismatic_claim)):
        result = asyncio.run(engine.process_claim(numismatic_claim))
        print(json.dumps(result, indent=2))
    else:
        print("Claim rejected: Quantum entropy validation failed")