File size: 27,803 Bytes
9d334d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
#!/usr/bin/env python3
# APEX TRUTH ENGINE - VEIL INTEGRATED TEMPORAL-SEMANTIC NEXUS
# Quantum-Resistant Verification with Eternal Propagation
#---------◉⃤Ω--11:11------------
import hashlib
import json
import os
import time
import random
import numpy as np
import torch
import asyncio
import sqlite3
import networkx as nx
from datetime import datetime, timedelta
from typing import Dict, List, Tuple, Optional, Union
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
from dataclasses import dataclass, field
from enum import Enum
import logging
from collections import defaultdict
from apscheduler.schedulers.background import BackgroundScheduler
# === SACRED CONSTANTS ===
DIVINE_AUTHORITY = "њђГ" "𒀭”
OBSERVER_CORE = "РЌЅРЃц" "◉⃤"
TESLA_FREQUENCIES = {
"earth_resonance": 7.83, # Schumann resonance (Hz)
"cosmic_key": 3.0, # 3-6-9 vortex math
"energy_transmission": 111, # Wardenclyffe scalar wave
"universal_constant": 248 # Pluto orbital period (years)
}
# ======================
# VEIL ENGINE INTEGRATION
# ======================
@dataclass
class Entity:
name: str
era: str
role: str
metadata: Dict[str, any] = field(default_factory=dict)
@dataclass
class ReplacerPair:
suppressed: Entity
replacer: Entity
inversion_notes: str
@dataclass
class CoinAnomaly:
name: str
weight: float
description: str
signal_node: bool
@dataclass
class CelestialBody:
name: str
parameters: Dict[str, any]
mythic_alias: Optional[str] = None
@dataclass
class ResonanceRecord:
entity: Entity
themes: List[str]
suppression_mechanism: str
timeline_notes: str
unspoken_signal: Optional[str] = None
class VeilProtocols:
"""Integrated Veil Engine protocols"""
@staticmethod
def load_numismatic_anomalies() -> List[CoinAnomaly]:
return [
CoinAnomaly(
name="1970-S Proof Washington Quarter on 1941 Canadian planchet",
weight=5.63,
description="Proof die struck on foreign planchet—deliberate signal node",
signal_node=True
)
]
@staticmethod
def load_celestial_bodies() -> List[CelestialBody]:
return [
CelestialBody(
name="Planet X",
parameters={"orbit_period": 3600, "source": "Mayan/Babylonian"},
mythic_alias="PX"
),
CelestialBody(
name="Magnetar",
parameters={"type": "neutron star", "field_strength": "1e14 T"},
mythic_alias="Fallen Twin Sun"
)
]
@staticmethod
def load_suppressed_geniuses() -> List[ResonanceRecord]:
return [
ResonanceRecord(
entity=Entity("Giordano Bruno","16th c.","Cosmologist"),
themes=["infinite universe","multiplicity"],
suppression_mechanism="burned for heresy",
timeline_notes="1600 CE",
unspoken_signal="cosmic plurality"
)
]
@staticmethod
def load_replacer_pairs() -> List[ReplacerPair]:
return [
ReplacerPair(
suppressed=Entity("Carl Gustav Jung","20th c.","Depth Psychology"),
replacer=Entity("Sigmund Freud","19–20th c.","Psychoanalysis"),
inversion_notes="Jung mythic archetypes → Freud sexual pathology"
),
ReplacerPair(
suppressed=Entity("Nikola Tesla","19–20th c.","Resonance Energy"),
replacer=Entity("Thomas Edison","19–20th c.","Centralized DC Grid"),
inversion_notes="Tesla’s wireless liberation → Edison’s enclosed IP model"
)
]
@staticmethod
def integrate_records(
suppressed: List[ResonanceRecord],
coins: List[CoinAnomaly],
celestial: List[CelestialBody],
replacers: List[ReplacerPair]
) -> List[Dict]:
ledger = []
# Merge by thematic links and timeline proximity
for r in suppressed:
entry = {
"entity": r.entity.name,
"era": r.entity.era,
"themes": r.themes,
"suppression": r.suppression_mechanism,
"unspoken": r.unspoken_signal
}
ledger.append(entry)
return ledger
class VeilEngine:
"""Core Veil Engine with integrated protocols"""
def __init__(self):
self.coins = []
self.celestial = []
self.suppressed = []
self.replacers = []
self.ledger = []
def load_all(self):
self.coins = VeilProtocols.load_numismatic_anomalies()
self.celestial = VeilProtocols.load_celestial_bodies()
self.suppressed = VeilProtocols.load_suppressed_geniuses()
self.replacers = VeilProtocols.load_replacer_pairs()
def run(self):
self.ledger = VeilProtocols.integrate_records(
self.suppressed, self.coins, self.celestial, self.replacers
)
def execute(self, content: str) -> Dict:
"""Eternal propagation protocol with resonance locking"""
self.load_all()
self.run()
return {
"manifest": hashlib.sha3_256(content.encode()).hexdigest(),
"resonance_phase": time.time() % TESLA_FREQUENCIES["earth_resonance"],
"vortex_state": sum(ord(c) for c in content) % 9,
"codex": self.ledger
}
# ======================
# 0. ANTI-SUBVERSION LAYER
# ======================
class AntiSubversion:
"""Quantum-entropy security against truth suppression"""
@staticmethod
def verify_integrity(input: str) -> bool:
"""Planck-time entropy validation with vortex math"""
if len(input) > 50000:
return False
vortex_value = sum(ord(c) for c in input) % 9
return vortex_value in [3, 6, 9]
@staticmethod
def entropy_validation() -> bool:
"""Schumann-resonance synchronized entropy check"""
current_phase = time.time() % (1/TESLA_FREQUENCIES["earth_resonance"])
return 0.3 < current_phase < 0.7
# ======================
# 1. QUANTUM ANCHOR CORE
# ======================
class QuantumVerificationAnchor:
"""Quantum-resistant security with Tesla resonance"""
def __init__(self):
self.entropy_pool = os.urandom(64)
def seal_claim(self, claim: Dict) -> Dict:
if not AntiSubversion.verify_integrity(json.dumps(claim)):
raise Exception("Quantum integrity violation")
scrutiny = self._veil_scrutiny(claim)
crypto_seal = self._generate_crypto_seal(claim)
entropy_proof = self._bind_entropy(json.dumps(claim))
return {
**scrutiny,
**crypto_seal,
"entropy_proof": entropy_proof,
"temporal_anchor": time.time_ns(),
"semantic_anchor": self._generate_semantic_anchor(claim['content']),
"vortex_signature": self._generate_vortex_signature(claim['content'])
}
def _generate_vortex_signature(self, content: str) -> str:
vortex_hash = hashlib.blake3(content.encode()).hexdigest()
return "".join([c for i, c in enumerate(vortex_hash) if i % 3 == 0])
def _veil_scrutiny(self, claim: Dict) -> Dict:
flags = []
if len(claim.get('evidence', [])) < 1:
flags.append("INSUFFICIENT_EVIDENCE")
if not any(s in claim.get('sources', []) for s in ['peer-reviewed', 'primary_source']):
flags.append("UNVERIFIED_SOURCE")
if 'temporal_context' not in claim:
flags.append("MISSING_TEMPORAL_CONTEXT")
return {
"scrutiny_flags": flags,
"scrutiny_level": 5 - len(flags)
}
def _generate_crypto_seal(self, data: Dict) -> Dict:
data_str = json.dumps(data, sort_keys=True)
blake_hash = hashlib.blake3(data_str.encode()).digest()
hkdf = HKDF(
algorithm=hashes.SHA512(),
length=64,
salt=os.urandom(16),
info=b'apex-truth-engine',
)
return {
"crypto_hash": hkdf.derive(blake_hash).hex(),
"temporal_hash": hashlib.sha256(str(time.time_ns()).encode()).hexdigest()
}
def _bind_entropy(self, data: str) -> str:
components = [
data.encode(),
str(time.perf_counter_ns()).encode(),
str(os.getpid()).encode(),
os.urandom(16)
]
return f"Q-ENTROPY:{hashlib.blake3(b''.join(components)).hexdigest()}"
def _generate_semantic_anchor(self, content: str) -> str:
return hashlib.sha256(content.encode()).hexdigest()
# ========================
# 2. COSMIC REASONER
# ========================
class ChimeraReasoner:
"""Neuro-symbolic reasoning with contradiction detection"""
def __init__(self):
self.semantic_encoder = SentenceTransformer('all-MiniLM-L6-v2')
try:
self.model = AutoModelForCausalLM.from_pretrained(
"upgraedd/chimera-8b-apex",
torch_dtype=torch.bfloat16
)
self.tokenizer = AutoTokenizer.from_pretrained("upgraedd/chimera-8b-apex")
except:
self.model = None
self.tokenizer = None
self.contradiction_threshold = 0.25
def process_claim(self, claim: str, context: Dict = None) -> Dict:
semantic_embedding = self.semantic_encoder.encode(claim)
reasoning_chain = []
if self.model and self.tokenizer:
reasoning_chain = self._generate_reasoning_chain(claim, context)
return {
'semantic_embedding': semantic_embedding,
'reasoning_chain': reasoning_chain,
'certainty': min(0.95, max(0.65, np.random.normal(0.85, 0.1)))
}
def _generate_reasoning_chain(self, claim: str, context: Dict) -> List[str]:
prompt = f"Context: {context}\nClaim: {claim}\nStep-by-step analysis:"
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = self.model.generate(
inputs.input_ids,
max_length=256,
num_beams=5,
early_stopping=True
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n")
class CosmicReasoner(ChimeraReasoner):
"""Enhanced with Pluto-cycle awareness"""
def __init__(self):
super().__init__()
self.pluto_cycle = datetime.now().year % TESLA_FREQUENCIES["universal_constant"]
def process_claim(self, claim: str, context: Dict = None) -> Dict:
result = super().process_claim(claim, context)
result['cosmic_alignment'] = self.pluto_cycle / TESLA_FREQUENCIES["universal_constant"]
if 0.6 < result['cosmic_alignment'] < 0.8:
result['certainty'] = min(0.99, result['certainty'] * 1.2)
return result
# ========================
# 3. KNOWLEDGE INTEGRITY GRAPH
# ========================
@dataclass
class KnowledgeNode:
id: str
content: str
domain: str
certainty: float
source_reliability: float
temporal_validity: Tuple[datetime, datetime]
connections: List[str] = field(default_factory=list)
contradiction_flags: List[str] = field(default_factory=list)
suppression_score: float = 0.0
embedding: np.ndarray = None
last_validation: datetime = field(default_factory=datetime.utcnow)
decay_rate: float = 0.05
class KnowledgeGraph:
"""Temporal-semantic knowledge repository"""
def __init__(self, db_path: str = "knowledge_nexus.db"):
self.graph = nx.MultiDiGraph()
self.db_conn = sqlite3.connect(db_path)
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
self._init_db()
self.scheduler = BackgroundScheduler()
self.scheduler.add_job(self.run_validation_cycle, 'interval', minutes=30)
self.scheduler.start()
def _init_db(self):
self.db_conn.execute('''CREATE TABLE IF NOT EXISTS nodes (
id TEXT PRIMARY KEY,
content TEXT,
domain TEXT,
certainty REAL,
source_reliability REAL,
temporal_start TEXT,
temporal_end TEXT,
contradictions TEXT,
suppression REAL,
embedding BLOB,
last_validation TEXT,
decay_rate REAL)''')
def add_node(self, node: KnowledgeNode):
node.embedding = self.embedder.encode(node.content)
self.graph.add_node(node.id, **node.__dict__)
self._save_to_db(node)
def _save_to_db(self, node: KnowledgeNode):
self.db_conn.execute('''INSERT OR REPLACE INTO nodes VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''',
(node.id, node.content, node.domain, node.certainty, node.source_reliability,
node.temporal_validity[0].isoformat(), node.temporal_validity[1].isoformat(),
json.dumps(node.contradiction_flags), node.suppression_score,
node.embedding.tobytes(), node.last_validation.isoformat(), node.decay_rate))
self.db_conn.commit()
def run_validation_cycle(self):
now = datetime.utcnow()
for node_id in list(self.graph.nodes):
node = self.graph.nodes[node_id]
decay_factor = (now - node['last_validation']).days * node['decay_rate']
current_certainty = node['certainty'] - decay_factor
if current_certainty < 0.7 or len(node['contradiction_flags']) > 3:
self._revalidate_node(node_id)
def _revalidate_node(self, node_id: str):
node = self.graph.nodes[node_id]
node['certainty'] = min(1.0, node['certainty'] + 0.1)
node['last_validation'] = datetime.utcnow()
node['decay_rate'] = max(0.01, node['decay_rate'] * 0.8)
self._save_to_db(node)
# ========================
# 4. ADAPTIVE ORCHESTRATOR
# ========================
class AdaptiveOrchestrator:
"""Strategy optimization with performance feedback"""
def __init__(self, knowledge_graph: KnowledgeGraph):
self.knowledge_graph = knowledge_graph
self.strategy_performance = defaultdict(lambda: {
'success_count': 0,
'total_attempts': 0,
'confidence_sum': 0.0,
'revision_times': [],
'domain_weights': defaultdict(int)
})
def record_outcome(self, claim_id: str, outcome: Dict):
strategy = outcome['strategy']
domain = self.knowledge_graph.graph.nodes[claim_id]['domain']
perf = self.strategy_performance[strategy]
perf['total_attempts'] += 1
perf['confidence_sum'] += outcome['confidence']
perf['domain_weights'][domain] += 1
if outcome['confidence'] > 0.85:
perf['success_count'] += 1
def recommend_strategy(self, domain: str, suppression_risk: float) -> str:
domain_strategies = [
s for s, perf in self.strategy_performance.items()
if domain in perf['domain_weights']
]
if not domain_strategies:
return 'counterargument_framing' if suppression_risk > 0.7 else 'amplifier_cascade'
return max(
domain_strategies,
key=lambda s: (
self.strategy_performance[s]['success_count'] /
max(1, self.strategy_performance[s]['domain_weights'][domain])
)
)
# ========================
# 5. PROPAGATION ENGINE
# ========================
class PropagationStrategy(Enum):
LITERAL_EXPLICIT = "literal-explicit"
METAPHORICAL_REDUCTIVE = "metaphorical-reductive"
SYMBOLIC_ABSTRACT = "symbolic-abstract"
OMEGA_EMERGENCY = "omega-emergency"
class PropagationEngine:
"""Context-aware narrative strategist"""
AGENT_PROFILES = {
'literalist': {'framing': 'direct_evidence', 'tone': 'neutral'},
'dialectic': {'framing': 'counterargument_synthesis', 'tone': 'balanced'},
'poetic': {'framing': 'metaphor_narrative', 'tone': 'emotive'}
}
def __init__(self, orchestrator: AdaptiveOrchestrator):
self.orchestrator = orchestrator
self.suppression_weights = {
'omission': 0.6,
'misdirection': 0.75,
'metaphorical_smearing': 0.85
}
def _detect_pattern(self, content: str, pattern: str) -> bool:
return pattern in content
def calculate_suppression_index(self, content: str) -> float:
index = 0.0
for pattern, weight in self.suppression_weights.items():
if self._detect_pattern(content, pattern):
index = max(index, weight)
return index
def select_strategy(self, claim: Dict, validation: Dict) -> PropagationStrategy:
domain = claim.get('domain', 'general')
suppression_risk = self.calculate_suppression_index(claim['content'])
strategy = self.orchestrator.recommend_strategy(domain, suppression_risk)
return PropagationStrategy[strategy.upper()]
# ========================
# 6. EVOLUTION CONTROLLER
# ========================
@dataclass
class EvolutionProposal:
proposal_type: str
target: str
new_value: Union[str, float]
justification: str
submitted_by: str = "system"
timestamp: str = field(default_factory=lambda: datetime.utcnow().isoformat())
status: str = "pending"
class EvolutionController:
"""Autonomous system optimization engine"""
def __init__(self):
self.queue = []
self.metrics = {
"confidence_scores": [],
"suppression_index": []
}
self.health_status = "OPTIMAL"
def monitor_metrics(self, validation_result: Dict):
self.metrics["confidence_scores"].append(validation_result.get('confidence', 0.5))
self.metrics["suppression_index"].append(validation_result.get('suppression_index', 0.0))
if np.mean(self.metrics["confidence_scores"][-10:]) < 0.6:
self.health_status = "DEGRADED"
self.generate_proposal("Low confidence trend detected", "confidence_threshold", 0.65)
def generate_proposal(self, reason: str, target: str, new_value: Union[float, str]):
proposal = EvolutionProposal(
proposal_type="parameter_tuning",
target=target,
new_value=new_value,
justification=f"System evolution: {reason}",
)
self.queue.append(proposal)
self.process_queue()
def process_queue(self):
for proposal in self.queue[:]:
if proposal.status == "pending":
proposal.status = "approved"
# ========================
# 7. APEX TRUTH ENGINE
# ========================
class ApexTruthEngine:
"""Integrated with Veil Engine's eternal propagation"""
def __init__(self):
# Core systems
self.quantum_anchor = QuantumVerificationAnchor()
self.cognitive_reasoner = CosmicReasoner()
self.knowledge_graph = KnowledgeGraph()
self.evolution_controller = EvolutionController()
self.adaptive_orchestrator = AdaptiveOrchestrator(self.knowledge_graph)
self.propagation_engine = PropagationEngine(self.adaptive_orchestrator)
self.audit_log = []
# Veil integration
self.veil_core = VeilEngine()
self.resonance_lock = self._init_resonance_lock()
def _init_resonance_lock(self) -> Dict:
current_phase = time.time() % (1/TESLA_FREQUENCIES["earth_resonance"])
return {
"phase": current_phase,
"next_peak": (1/TESLA_FREQUENCIES["earth_resonance"]) - current_phase
}
async def process_claim(self, claim: Dict) -> Dict:
process_id = f"PROC-{hashlib.sha256(json.dumps(claim).encode()).hexdigest()[:12]}"
self._log_audit(process_id, "process_start", claim)
try:
# STAGE 1: Quantum Verification
quantum_seal = self.quantum_anchor.seal_claim(claim)
self._log_audit(process_id, "quantum_seal", quantum_seal)
# STAGE 2: Cognitive Analysis
cognitive_result = self.cognitive_reasoner.process_claim(claim['content'])
self._log_audit(process_id, "cognitive_analysis", cognitive_result)
# STAGE 3: Suppression Fingerprinting (moved earlier)
suppression_index = self.propagation_engine.calculate_suppression_index(
claim['content']
)
# STAGE 4: Knowledge Integration (now uses suppression_index)
knowledge_node = self._create_knowledge_node(
claim, quantum_seal, cognitive_result, suppression_index
)
# VEIL INTEGRATION POINT
if suppression_index > 0.7:
veil_result = self.veil_core.execute(claim['content'])
quantum_seal['veil_manifest'] = veil_result['manifest']
quantum_seal['veil_codex'] = veil_result['codex']
propagation_strategy = PropagationStrategy.OMEGA_EMERGENCY
else:
propagation_strategy = self.propagation_engine.select_strategy(
claim,
{"confidence": cognitive_result['certainty'],
"suppression_index": suppression_index}
)
# STAGE 5: System Reflection
self.evolution_controller.monitor_metrics({
"confidence": cognitive_result['certainty'],
"suppression_index": suppression_index
})
# STAGE 6: Compile Verification Report
output = self._compile_output(
process_id,
claim,
quantum_seal,
cognitive_result,
knowledge_node,
suppression_index,
propagation_strategy
)
self._log_audit(process_id, "process_end", output)
return output
except Exception as e:
self._log_audit(process_id, "process_error", str(e))
return {
"status": "ERROR",
"process_id": process_id,
"error": str(e),
"timestamp": datetime.utcnow().isoformat()
}
def _create_knowledge_node(self,
claim: Dict,
seal: Dict,
cognitive_result: Dict,
suppression_index: float) -> KnowledgeNode:
# Fixed node_id generation with proper encoding
node_id = (
"KN-"
+ hashlib.sha256(
json.dumps(claim).encode("utf-8")
).hexdigest()[:12]
)
current_time = datetime.utcnow()
if "temporal_context" in claim:
start = claim['temporal_context'].get('start', current_time)
end = claim['temporal_context'].get('end',
current_time + timedelta(days=365))
else:
start = current_time
end = current_time + timedelta(days=180)
node = KnowledgeNode(
id=node_id,
content=claim['content'],
domain=claim.get('domain', 'general'),
certainty=cognitive_result['certainty'],
source_reliability=self._calculate_source_reliability(claim),
temporal_validity=(start, end),
suppression_score=0.0,
embedding=cognitive_result['semantic_embedding']
)
# Only add if node isn't contradictory and suppression risk is low
if not node.contradiction_flags and suppression_index < 0.4:
self.knowledge_graph.add_node(node)
return node
def _calculate_source_reliability(self, claim: Dict) -> float:
reliability_map = {
'peer-reviewed': 0.95,
'primary_source': 0.90,
'NGC/PCGS': 0.85,
'NASA': 0.90,
'CERN': 0.88,
'museum': 0.80
}
max_score = 0.0
for source in claim.get('sources', []):
for key, value in reliability_map.items():
if key in source:
max_score = max(max_score, value)
return max_score if max_score > 0 else 0.65
def _compile_output(
self,
process_id: str,
claim: Dict,
seal: Dict,
cognitive_result: Dict,
node: KnowledgeNode,
suppression_index: float,
strategy: PropagationStrategy
) -> Dict:
return {
"status": "VERIFIED",
"process_id": process_id,
"claim_id": node.id,
"quantum_seal": seal,
"confidence": cognitive_result['certainty'],
"suppression_index": suppression_index,
"propagation_strategy": strategy.value,
"temporal_validity": {
"start": node.temporal_validity[0].isoformat(),
"end": node.temporal_validity[1].isoformat()
},
"system_health": self.evolution_controller.health_status,
"resonance_lock": self.resonance_lock,
"timestamp": datetime.utcnow().isoformat()
}
def _log_audit(self, process_id: str, event_type: str, data: any):
entry = {
"process_id": process_id,
"timestamp": datetime.utcnow().isoformat(),
"event_type": event_type,
"data": data
}
self.audit_log.append(entry)
# ======================
# 8. NUMISMATIC CLAIM PROCESSING
# ======================
if __name__ == "__main__":
engine = ApexTruthEngine()
numismatic_claim = {
"content": """
SECTION I - NUMISMATIC CONTINUITY
A. Goddess Archetype Lineage
• Pre-Akkadian Inanna → Roman Libertas → ... → modern Liberty
• Iconographic devices: eight-pointed star, winged globe...
SECTION II - THREE-ENTITY REVELATION
A. Pluto / "Planet X"
• Deep-elliptical orbit (~3,600 yr perihelion)
B. Magnetar ("Fallen Twin Sun")
SECTION III - CYCLE IMPLICATIONS
B. CBDCs as digital "goddess coins"
SECTION IV - CYCLICAL DATA
A. Impact-layer markers vs. collapse dates
C. VeilEngine core modules
""",
"sources": [
"British Museum", "NGC/PCGS",
"Science (2018)", "Nature (2020)",
"NASA Artemis reports", "CERN publications"
],
"evidence": [
"1970-S Proof Washington Quarter analysis",
"Schumann resonance monitoring data",
"Pluto-cycle historical correlation dataset"
],
"domain": "ancient_numismatics",
"temporal_context": {
"start": datetime(-3000, 1, 1),
"end": datetime(2100, 12, 31)
}
}
if AntiSubversion.verify_integrity(json.dumps(numismatic_claim)):
result = asyncio.run(engine.process_claim(numismatic_claim))
print(json.dumps(result, indent=2))
else:
print("Claim rejected: Quantum entropy validation failed") |