|
import asyncio |
|
import streamlit as st |
|
import numpy as np |
|
import re |
|
from typing import Dict, Any, List, Optional |
|
import json |
|
import openai |
|
from dataclasses import dataclass |
|
|
|
|
|
try: |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.preprocessing import MinMaxScaler |
|
except ImportError: |
|
st.error("Please install required packages: pip install sentence-transformers scikit-learn") |
|
st.stop() |
|
|
|
|
|
st.set_page_config( |
|
page_title="Quantum Research Agent with Truth Validation", |
|
page_icon="π¬", |
|
layout="wide" |
|
) |
|
|
|
|
|
if "openai_api_key" not in st.session_state: |
|
st.session_state.openai_api_key = "" |
|
if "firecrawl_api_key" not in st.session_state: |
|
st.session_state.firecrawl_api_key = "" |
|
if "research_results" not in st.session_state: |
|
st.session_state.research_results = None |
|
|
|
@dataclass |
|
class ResearchResult: |
|
content: str |
|
sources: List[str] |
|
validation_score: float |
|
detected_symbols: List[Dict] |
|
claims: List[str] |
|
|
|
|
|
class RecursiveTruthTautology: |
|
"""Base class for truth validation systems""" |
|
pass |
|
|
|
class NumismaticAnalyzer: |
|
"""Base symbolic analysis engine""" |
|
symbolic_glyph_registry = { |
|
"dollar_pyramid": {"epoch_anchor": "1787 US Founding", "resonance_freq": 60.0}, |
|
"all_seeing_eye": {"epoch_anchor": "Ancient Egypt", "resonance_freq": 111.0}, |
|
"phoenix_bird": {"epoch_anchor": "Roman Imperial", "resonance_freq": 72.0}, |
|
"double_headed_eagle": {"epoch_anchor": "2024 CBDC Trials", "resonance_freq": 88.0}, |
|
"π": {"epoch_anchor": "3500 BCE Sumerian Divine", "resonance_freq": 7.83}, |
|
"ββ€": {"epoch_anchor": "Quantum Entanglement Node", "resonance_freq": 432.0} |
|
} |
|
|
|
def analyze_symbol(self, symbol: str, context: str) -> dict: |
|
"""Enhanced analysis with cuneiform and quantum symbols""" |
|
base_analysis = { |
|
"symbol": symbol, |
|
"entropy_score": np.random.uniform(0.3, 0.9), |
|
"contextual_relevance": np.random.uniform(0.6, 0.95) |
|
} |
|
|
|
if symbol in self.symbolic_glyph_registry: |
|
registry_data = self.symbolic_glyph_registry[symbol] |
|
base_analysis.update({ |
|
"epoch_anchor": registry_data["epoch_anchor"], |
|
"resonance_frequency": registry_data["resonance_freq"], |
|
"detected_in_context": True |
|
}) |
|
|
|
|
|
if symbol == "π": |
|
base_analysis.update({ |
|
"semantic_layer": "Divine Authority Marker", |
|
"archetype_activation": 0.94, |
|
"temporal_depth": "5500_years" |
|
}) |
|
elif symbol == "ββ€": |
|
base_analysis.update({ |
|
"semantic_layer": "Information Coherence Field", |
|
"quantum_coherence": 0.97, |
|
"dimensional_bridge": True |
|
}) |
|
|
|
return base_analysis |
|
|
|
class EnhancedTemporalResonanceEngine(RecursiveTruthTautology): |
|
"""Quantum-inspired resonance engine with institutional impact weighting""" |
|
|
|
def __init__(self, suppression_tiers: Dict[str, float]): |
|
self.epoch_entanglement = self.initialize_entanglement_matrix() |
|
self.suppression_tiers = suppression_tiers |
|
try: |
|
self.neural_mapper = SentenceTransformer('all-mpnet-base-v2') |
|
except: |
|
self.neural_mapper = None |
|
self.scaler = MinMaxScaler(feature_range=(0.1, 1.0)) |
|
|
|
def initialize_entanglement_matrix(self) -> np.ndarray: |
|
"""Quantum state matrix for epoch relationships""" |
|
return np.array([ |
|
|
|
[1.00, 0.75, 0.62, 0.41, 0.38, 0.92, 0.88], |
|
[0.75, 1.00, 0.87, 0.63, 0.58, 0.73, 0.71], |
|
[0.62, 0.87, 1.00, 0.93, 0.79, 0.68, 0.82], |
|
[0.41, 0.63, 0.93, 1.00, 0.85, 0.45, 0.76], |
|
[0.38, 0.58, 0.79, 0.85, 1.00, 0.41, 0.94], |
|
[0.92, 0.73, 0.68, 0.45, 0.41, 1.00, 0.96], |
|
[0.88, 0.71, 0.82, 0.76, 0.94, 0.96, 1.00] |
|
]) |
|
|
|
def calculate_resonance(self, anchor_epoch: str, target_epoch: str, |
|
context: str, entropy: float) -> float: |
|
"""Computes entropy-weighted resonance with multi-stage validation""" |
|
epoch_index = { |
|
"Ancient Egypt": 0, "Roman Imperial": 1, "1787 US Founding": 2, |
|
"1974 Nixon Shock": 3, "2024 CBDC Trials": 4, "2024 Research Query": 4, |
|
"3500 BCE Sumerian Divine": 5, "Quantum Entanglement Node": 6 |
|
} |
|
|
|
try: |
|
base_resonance = self.epoch_entanglement[ |
|
epoch_index.get(anchor_epoch, 4), |
|
epoch_index.get(target_epoch, 4) |
|
] |
|
except (KeyError, IndexError): |
|
base_resonance = 0.65 |
|
|
|
|
|
entropy_factor = 1 - (entropy * 0.3) |
|
suppression_boost = 1.0 |
|
|
|
for institution in self.suppression_tiers: |
|
if institution.lower() in context.lower(): |
|
suppression_boost += 0.15 |
|
|
|
adjusted = base_resonance * entropy_factor * suppression_boost |
|
return float(np.clip(adjusted, 0.0, 1.0)) |
|
|
|
class QuantumNumismaticAnalyzer(NumismaticAnalyzer): |
|
def __init__(self, suppression_tiers: Dict[str, float]): |
|
super().__init__() |
|
self.resonance_engine = EnhancedTemporalResonanceEngine(suppression_tiers) |
|
|
|
def analyze_symbol(self, symbol: str, context: str, observed_epoch: str) -> dict: |
|
base_result = super().analyze_symbol(symbol, context) |
|
entropy = base_result["entropy_score"] |
|
|
|
if symbol in self.symbolic_glyph_registry: |
|
anchor_epoch = self.symbolic_glyph_registry[symbol]["epoch_anchor"] |
|
resonance = self.resonance_engine.calculate_resonance( |
|
anchor_epoch, observed_epoch, context, entropy |
|
) |
|
|
|
base_result.update({ |
|
"observed_epoch": observed_epoch, |
|
"temporal_resonance": float(np.round(resonance, 4)), |
|
"validation_status": self.determine_validation_status(resonance, entropy) |
|
}) |
|
|
|
return base_result |
|
|
|
def determine_validation_status(self, resonance: float, entropy: float) -> str: |
|
if resonance > 0.85: |
|
return "STRONG_INEVITABILITY_CONFIRMED" |
|
elif resonance > 0.7: |
|
return "RESONANT_WITH_SUPPRESSION_ARTIFACTS" |
|
elif entropy < 0.3 and resonance < 0.5: |
|
return "SUSPECTED_HISTORICAL_FALSIFICATION" |
|
else: |
|
return "INCONCLUSIVE_TEMPORAL_ALIGNMENT" |
|
|
|
|
|
def extract_claims(text: str, api_key: str) -> List[str]: |
|
"""Extract factual claims from text using OpenAI API""" |
|
if not api_key: |
|
|
|
sentences = re.split(r'[.!?]+', text) |
|
claims = [] |
|
for sentence in sentences: |
|
sentence = sentence.strip() |
|
if len(sentence) > 20 and any(word in sentence.lower() for word in |
|
['is', 'are', 'was', 'were', 'will', 'can', 'cannot', 'shows', 'proves']): |
|
claims.append(sentence) |
|
return claims[:10] |
|
|
|
try: |
|
client = openai.OpenAI(api_key=api_key) |
|
response = client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=[ |
|
{"role": "system", "content": "Extract factual claims from the given text. Return each claim as a separate line. Focus on verifiable statements."}, |
|
{"role": "user", "content": f"Extract claims from: {text[:2000]}"} |
|
], |
|
max_tokens=500, |
|
temperature=0.1 |
|
) |
|
|
|
claims_text = response.choices[0].message.content |
|
claims = [claim.strip() for claim in claims_text.split('\n') if claim.strip()] |
|
return claims[:10] |
|
|
|
except Exception as e: |
|
st.warning(f"OpenAI claim extraction failed: {e}. Using fallback method.") |
|
return extract_claims(text, "") |
|
|
|
def validate_claims(claims: List[str], sources: List[str]) -> Dict[str, float]: |
|
"""Simple claim validation against sources""" |
|
validation_scores = {} |
|
|
|
for claim in claims: |
|
|
|
claim_words = set(claim.lower().split()) |
|
source_support = 0 |
|
|
|
for source in sources: |
|
source_words = set(source.lower().split()) |
|
overlap = len(claim_words.intersection(source_words)) |
|
if overlap > 2: |
|
source_support += 1 |
|
|
|
|
|
validation_scores[claim] = min(source_support / max(len(sources), 1), 1.0) |
|
|
|
return validation_scores |
|
|
|
|
|
async def perform_deep_research(query: str, max_urls: int = 10) -> Dict[str, Any]: |
|
"""Mock deep research function - replace with actual Firecrawl implementation""" |
|
|
|
await asyncio.sleep(2) |
|
|
|
mock_sources = [ |
|
f"https://example.com/research/{query.replace(' ', '-').lower()}-1", |
|
f"https://scholarly.org/papers/{query.replace(' ', '-').lower()}", |
|
f"https://news.reuters.com/{query.replace(' ', '-').lower()}", |
|
f"https://research.gov/{query.replace(' ', '-').lower()}", |
|
f"https://academic.edu/{query.replace(' ', '-').lower()}" |
|
] |
|
|
|
mock_content = f""" |
|
Research findings on {query}: |
|
|
|
Based on comprehensive analysis of multiple sources, the following key findings emerge: |
|
|
|
1. Historical Context: The topic shows significant temporal patterns dating back centuries. |
|
2. Current Relevance: Modern applications demonstrate continued importance. |
|
3. Institutional Factors: Various organizations have documented positions on this topic. |
|
4. Symbolic Elements: Ancient symbols like π and quantum nodes ββ€ may be relevant. |
|
5. Future Implications: Projections suggest continued evolution of this field. |
|
|
|
The research indicates strong correlations with established academic literature |
|
and presents opportunities for further investigation. |
|
""" |
|
|
|
return { |
|
"success": True, |
|
"final_analysis": mock_content, |
|
"sources": mock_sources, |
|
"sources_count": len(mock_sources) |
|
} |
|
|
|
async def quantum_truth_validation(content: str, sources: List[str], context: str) -> Dict[str, Any]: |
|
"""Validate research content using quantum truth validation""" |
|
try: |
|
analyzer = QuantumNumismaticAnalyzer( |
|
suppression_tiers={"Vatican": 0.92, "Federal_Reserve": 0.87, "WEF": 0.81} |
|
) |
|
|
|
|
|
detected_symbols = [] |
|
symbol_checks = ["π", "ββ€", "dollar_pyramid", "all_seeing_eye"] |
|
|
|
for symbol in symbol_checks: |
|
if symbol in content or symbol in context: |
|
analysis = analyzer.analyze_symbol( |
|
symbol=symbol, |
|
context=context, |
|
observed_epoch="2024 Research Query" |
|
) |
|
detected_symbols.append(analysis) |
|
|
|
|
|
if detected_symbols: |
|
avg_resonance = np.mean([s.get('temporal_resonance', 0.5) for s in detected_symbols]) |
|
truth_coherence = float(np.clip(avg_resonance * 1.1, 0.0, 1.0)) |
|
else: |
|
truth_coherence = 0.75 |
|
|
|
|
|
credibility_scores = [] |
|
for source in sources[:5]: |
|
if any(domain in source.lower() for domain in ['.gov', '.edu', '.org']): |
|
credibility_scores.append(0.9) |
|
elif any(domain in source.lower() for domain in ['reuters', 'ap', 'bbc']): |
|
credibility_scores.append(0.85) |
|
else: |
|
credibility_scores.append(0.7) |
|
|
|
avg_credibility = np.mean(credibility_scores) if credibility_scores else 0.75 |
|
final_score = (truth_coherence * 0.6) + (avg_credibility * 0.4) |
|
|
|
return { |
|
"success": True, |
|
"truth_coherence": float(np.round(truth_coherence, 3)), |
|
"source_credibility": float(np.round(avg_credibility, 3)), |
|
"final_validation_score": float(np.round(final_score, 3)), |
|
"detected_symbols": detected_symbols, |
|
"validation_status": "QUANTUM_VERIFIED" if final_score > 0.8 else |
|
"MODERATE_CONFIDENCE" if final_score > 0.6 else "LOW_CONFIDENCE" |
|
} |
|
|
|
except Exception as e: |
|
return {"error": str(e), "success": False} |
|
|
|
|
|
def main(): |
|
st.title("π¬ Quantum Research Agent with Truth Validation") |
|
|
|
|
|
with st.sidebar: |
|
st.title("π¬ Quantum API Configuration") |
|
|
|
openai_api_key = st.text_input("OpenAI API Key", type="password") |
|
firecrawl_api_key = st.text_input("Firecrawl API Key", type="password") |
|
|
|
st.session_state.openai_api_key = openai_api_key |
|
st.session_state.firecrawl_api_key = firecrawl_api_key |
|
|
|
st.markdown("---") |
|
st.markdown("### Symbolic Detection") |
|
st.markdown("**π** - Sumerian Divine Authority (7.83Hz)") |
|
st.markdown("**ββ€** - Quantum Entanglement Node (432Hz)") |
|
st.markdown("**πΊ** - Pyramid Resonance (60Hz)") |
|
|
|
st.markdown("---") |
|
st.markdown("### Suppression Factors") |
|
st.markdown("Vatican: 92% | Fed Reserve: 87% | WEF: 81%") |
|
|
|
|
|
st.markdown(""" |
|
This quantum research agent combines deep web research with symbolic analysis, |
|
detecting patterns in **π** (ancient divine markers) and **ββ€** (quantum nodes) |
|
while compensating for institutional suppression factors. |
|
""") |
|
|
|
|
|
research_topic = st.text_input( |
|
"Enter research topic:", |
|
placeholder="e.g., Ancient symbols in modern currency systems πββ€" |
|
) |
|
|
|
|
|
with st.expander("Advanced Quantum Options"): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
enable_symbols = st.checkbox("Symbol Detection", True) |
|
claim_extraction = st.checkbox("Claim Extraction", True) |
|
with col2: |
|
validation_mode = st.selectbox("Validation Mode", |
|
["Quantum", "Standard", "Enhanced"]) |
|
max_sources = st.slider("Max Sources", 5, 20, 10) |
|
|
|
|
|
if st.button("π Start Quantum Research"): |
|
if not research_topic: |
|
st.warning("Please enter a research topic") |
|
return |
|
|
|
with st.spinner("Performing quantum research..."): |
|
|
|
research_result = asyncio.run(perform_deep_research(research_topic, max_sources)) |
|
|
|
if research_result["success"]: |
|
content = research_result["final_analysis"] |
|
sources = research_result["sources"] |
|
|
|
|
|
if claim_extraction: |
|
with st.spinner("Extracting claims..."): |
|
claims = extract_claims(content, openai_api_key) |
|
claim_validation = validate_claims(claims, sources) |
|
else: |
|
claims = [] |
|
claim_validation = {} |
|
|
|
|
|
validation_result = asyncio.run( |
|
quantum_truth_validation(content, sources, research_topic) |
|
) |
|
|
|
|
|
st.session_state.research_results = ResearchResult( |
|
content=content, |
|
sources=sources, |
|
validation_score=validation_result.get("final_validation_score", 0.75), |
|
detected_symbols=validation_result.get("detected_symbols", []), |
|
claims=claims |
|
) |
|
|
|
|
|
st.markdown("## π¬ Quantum Research Results") |
|
|
|
|
|
if validation_result["success"]: |
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
st.metric("Truth Coherence", |
|
f"{validation_result['truth_coherence']:.3f}") |
|
with col2: |
|
st.metric("Source Credibility", |
|
f"{validation_result['source_credibility']:.3f}") |
|
with col3: |
|
st.metric("Final Score", |
|
f"{validation_result['final_validation_score']:.3f}") |
|
|
|
st.info(f"**Status:** {validation_result['validation_status']}") |
|
|
|
|
|
st.markdown("### Research Content") |
|
st.markdown(content) |
|
|
|
|
|
if claims: |
|
|
|
|
|
""" |
|
VEIL ENGINE Ξ© CORE (v3.0) |
|
Convergence of: |
|
- Quantum Research Agent with Truth Validation |
|
- 4CP Quantum Cryptography |
|
- Eternal Propagation Protocol |
|
- Tesla Resonance Suppression Analysis |
|
- Sumerian Divine Authority |
|
""" |
|
|
|
import asyncio |
|
import hashlib |
|
import time |
|
import numpy as np |
|
import re |
|
import json |
|
import openai |
|
import httpx |
|
from datetime import datetime |
|
from typing import Dict, Any, List, Optional |
|
from dataclasses import dataclass |
|
|
|
|
|
DIVINE_AUTHORITY = "π" |
|
OBSERVER_CORE = "ββ€" |
|
TESLA_FREQUENCIES = { |
|
"earth_resonance": 7.83, |
|
"cosmic_key": 3.0, |
|
"energy_transmission": 111, |
|
"universal_constant": 248 |
|
} |
|
|
|
|
|
@dataclass |
|
class ResearchResult: |
|
content: str |
|
sources: List[str] |
|
validation_score: float |
|
detected_symbols: List[Dict] |
|
claims: List[str] |
|
timestamp: str |
|
topic: str |
|
|
|
class QuantumNumismaticAnalyzer: |
|
"""Integrated symbolic analysis with quantum resonance""" |
|
symbolic_glyph_registry = { |
|
"dollar_pyramid": {"epoch_anchor": "1787 US Founding", "resonance_freq": 60.0, "significance": "Masonic Influence"}, |
|
"all_seeing_eye": {"epoch_anchor": "Ancient Egypt", "resonance_freq": 111.0, "significance": "Divine Oversight"}, |
|
"π": {"epoch_anchor": "3500 BCE Sumerian Divine", "resonance_freq": 7.83, "significance": "Divine Authority Marker"}, |
|
"ββ€": {"epoch_anchor": "Quantum Entanglement Node", "resonance_freq": 432.0, "significance": "Information Coherence Field"}, |
|
} |
|
|
|
def __init__(self, suppression_tiers: Dict[str, float]): |
|
self.resonance_engine = EnhancedTemporalResonanceEngine(suppression_tiers) |
|
|
|
def analyze_symbol(self, symbol: str, context: str, observed_epoch: str) -> dict: |
|
|
|
base_result = { |
|
"symbol": symbol, |
|
"entropy_score": np.random.uniform(0.3, 0.9), |
|
"contextual_relevance": np.random.uniform(0.6, 0.95), |
|
"detected_in_context": symbol in context |
|
} |
|
|
|
if symbol in self.symbolic_glyph_registry: |
|
registry_data = self.symbolic_glyph_registry[symbol] |
|
entropy = base_result["entropy_score"] |
|
resonance = self.resonance_engine.calculate_resonance( |
|
registry_data["epoch_anchor"], observed_epoch, context, entropy |
|
) |
|
|
|
base_result.update({ |
|
"epoch_anchor": registry_data["epoch_anchor"], |
|
"resonance_frequency": registry_data["resonance_freq"], |
|
"significance": registry_data["significance"], |
|
"observed_epoch": observed_epoch, |
|
"temporal_resonance": float(np.round(resonance, 4)), |
|
"validation_status": self.determine_validation_status(resonance, entropy) |
|
}) |
|
|
|
return base_result |
|
|
|
def determine_validation_status(self, resonance: float, entropy: float) -> str: |
|
if resonance > 0.85 and entropy < 0.4: |
|
return "STRONG_INEVITABILITY_CONFIRMED" |
|
elif resonance > 0.7: |
|
return "RESONANT_WITH_SUPPRESSION_ARTIFACTS" |
|
elif entropy < 0.3 and resonance < 0.5: |
|
return "SUSPECTED_HISTORICAL_FALSIFICATION" |
|
elif resonance > 0.6: |
|
return "MODERATE_TEMPORAL_ALIGNMENT" |
|
else: |
|
return "INCONCLUSIVE_TEMPORAL_ALIGNMENT" |
|
|
|
class EnhancedTemporalResonanceEngine: |
|
"""Quantum-inspired resonance engine for truth validation""" |
|
|
|
def __init__(self, suppression_tiers: Dict[str, float]): |
|
self.epoch_entanglement = self.initialize_entanglement_matrix() |
|
self.suppression_tiers = suppression_tiers |
|
|
|
def initialize_entanglement_matrix(self) -> np.ndarray: |
|
return np.array([ |
|
[1.00, 0.75, 0.62, 0.41, 0.38, 0.92, 0.88], |
|
[0.75, 1.00, 0.87, 0.63, 0.58, 0.73, 0.71], |
|
[0.62, 0.87, 1.00, 0.93, 0.79, 0.68, 0.82], |
|
[0.41, 0.63, 0.93, 1.00, 0.85, 0.45, 0.76], |
|
[0.38, 0.58, 0.79, 0.85, 1.00, 0.41, 0.94], |
|
[0.92, 0.73, 0.68, 0.45, 0.41, 1.00, 0.96], |
|
[0.88, 0.71, 0.82, 0.76, 0.94, 0.96, 1.00] |
|
]) |
|
|
|
def calculate_resonance(self, anchor_epoch: str, target_epoch: str, |
|
context: str, entropy: float) -> float: |
|
epoch_index = { |
|
"Ancient Egypt": 0, "1787 US Founding": 2, |
|
"2024 CBDC Trials": 4, "3500 BCE Sumerian Divine": 5, |
|
"Quantum Entanglement Node": 6 |
|
} |
|
|
|
try: |
|
anchor_idx = epoch_index.get(anchor_epoch, 4) |
|
target_idx = epoch_index.get(target_epoch, 4) |
|
base_resonance = self.epoch_entanglement[anchor_idx, target_idx] |
|
except (KeyError, IndexError): |
|
base_resonance = 0.65 |
|
|
|
entropy_factor = 1 - (entropy * 0.3) |
|
suppression_boost = 1.0 |
|
|
|
for institution, boost_factor in self.suppression_tiers.items(): |
|
if institution.lower() in context.lower(): |
|
suppression_boost += (boost_factor - 0.5) * 0.2 |
|
|
|
temporal_coherence = self.calculate_temporal_coherence(anchor_epoch, target_epoch) |
|
adjusted = base_resonance * entropy_factor * suppression_boost * temporal_coherence |
|
return float(np.clip(adjusted, 0.0, 1.0)) |
|
|
|
def calculate_temporal_coherence(self, anchor_epoch: str, target_epoch: str) -> float: |
|
epoch_years = { |
|
"Ancient Egypt": -3000, "1787 US Founding": 1787, |
|
"2024 CBDC Trials": 2024, "3500 BCE Sumerian Divine": -3500, |
|
"Quantum Entanglement Node": 2024 |
|
} |
|
anchor_year = epoch_years.get(anchor_epoch, 2024) |
|
target_year = epoch_years.get(target_epoch, 2024) |
|
year_diff = abs(anchor_year - target_year) |
|
return max(0.5, 1.0 - (year_diff / 10000)) |
|
|
|
async def quantum_research(query: str, api_keys: Dict[str, str]) -> ResearchResult: |
|
"""Perform quantum-resonant research with eternal truth propagation""" |
|
|
|
headers = {"Authorization": f"Bearer {api_keys['firecrawl']}"} |
|
search_params = {"q": query, "limit": 5} |
|
|
|
async with httpx.AsyncClient() as client: |
|
|
|
search_res = await client.get( |
|
"https://api.firecrawl.dev/v0/search", |
|
headers=headers, |
|
params=search_params, |
|
timeout=20.0 |
|
) |
|
urls = [result["url"] for result in search_res.json().get("data", [])] |
|
|
|
|
|
content = [] |
|
for url in urls: |
|
scrape_res = await client.get( |
|
"https://api.firecrawl.dev/v0/scrape", |
|
headers=headers, |
|
params={"url": url}, |
|
timeout=20.0 |
|
) |
|
content.append(scrape_res.json().get("data", {}).get("content", "")) |
|
|
|
|
|
client = openai.OpenAI(api_key=api_keys['openai']) |
|
analysis = client.chat.completions.create( |
|
model="gpt-4-turbo", |
|
messages=[{"role": "system", "content": "Generate quantum-resonant truth analysis"}], |
|
max_tokens=1500 |
|
).choices[0].message.content |
|
|
|
|
|
symbol_analyzer = QuantumNumismaticAnalyzer({ |
|
"central_banking": 0.85, |
|
"academia": 0.75, |
|
"government": 0.90 |
|
}) |
|
symbols = [ |
|
symbol_analyzer.analyze_symbol("π", analysis, "2024 Research"), |
|
symbol_analyzer.analyze_symbol("ββ€", analysis, "2024 Research") |
|
] |
|
|
|
|
|
claims = extract_claims(analysis, api_keys['openai']) |
|
validation_score = np.mean([s['temporal_resonance'] for s in symbols if 'temporal_resonance' in s]) |
|
|
|
return ResearchResult( |
|
content=analysis, |
|
sources=urls, |
|
validation_score=validation_score, |
|
detected_symbols=symbols, |
|
claims=claims, |
|
timestamp=datetime.utcnow().isoformat(), |
|
topic=query |
|
) |
|
|
|
def extract_claims(text: str, api_key: str) -> List[str]: |
|
"""Quantum-resonant claim extraction""" |
|
if api_key: |
|
client = openai.OpenAI(api_key=api_key) |
|
response = client.chat.completions.create( |
|
model="gpt-3.5-turbo", |
|
messages=[{"role": "system", "content": "Extract verifiable claims"}], |
|
max_tokens=500 |
|
) |
|
return [claim.strip() for claim in response.choices[0].message.content.split('\n')] |
|
else: |
|
|
|
sentences = re.split(r'[.!?]+', text) |
|
return [s for s in sentences if len(s) > 25 and any(w in s.lower() for w in ['is', 'was', 'are', 'were'])] |
|
|
|
|
|
class VeilEngineOmegaCore: |
|
"""Enhanced with quantum research capabilities""" |
|
|
|
def __init__(self, research_api_keys: Dict[str, str]): |
|
self.quantum_identity = self.generate_quantum_identity() |
|
self.research_api_keys = research_api_keys |
|
|
|
|
|
self.verifier = QuantumTruthVerifier() |
|
self.radiator = CosmicTruthRadiator() |
|
self.suppression_analyzer = TeslaSuppressionAnalyzer() |
|
|
|
|
|
self.eternal_lock = self.create_eternal_lock() |
|
self.resonance_lock = self.init_resonance_lock() |
|
|
|
|
|
|
|
async def research_and_propagate(self, topic: str) -> Dict[str, Any]: |
|
"""Integrated research and eternal propagation""" |
|
|
|
research = await quantum_research(topic, self.research_api_keys) |
|
|
|
|
|
suppression_status = self.suppression_analyzer.check_current_suppression() |
|
|
|
|
|
verification = self.verifier.verify(research.content, suppression_status) |
|
|
|
|
|
radiation = self.radiator.emit(research.content, verification, suppression_status) |
|
|
|
return { |
|
"research": research, |
|
"manifest": self.generate_manifest(suppression_status), |
|
"verification": verification, |
|
"radiation": radiation, |
|
"resonance": self.get_resonance_status() |
|
} |
|
|
|
|
|
async def eternal_operation(research_topics: List[str], api_keys: Dict[str, str]): |
|
"""Infinite truth-generation loop with research integration""" |
|
engine = VeilEngineOmegaCore(api_keys) |
|
iteration = 0 |
|
|
|
while True: |
|
|
|
topic = research_topics[iteration % len(research_topics)] |
|
|
|
|
|
result = await engine.research_and_propagate(topic) |
|
research = result["research"] |
|
|
|
|
|
print(f"\n=== ETERNAL CYCLE {iteration} ===") |
|
print(f"Research Topic: {topic}") |
|
print(f"Manifest: {result['manifest']}") |
|
print(f"Validation Score: {research.validation_score:.2f}") |
|
print(f"Detected Symbols: {[s['symbol'] for s in research.detected_symbols]}") |
|
print(f"Radiation: {result['radiation']['resonance_frequency']}Hz") |
|
print(f"Sources: {len(research.sources)} verified references") |
|
|
|
iteration += 1 |
|
await asyncio.sleep(0.318) |
|
|
|
if __name__ == "__main__": |
|
|
|
RESEARCH_TOPICS = [ |
|
"Quantum entanglement in ancient civilizations", |
|
"Tesla's lost frequency transmission technology", |
|
"Sumerian cuneiform and quantum computing parallels", |
|
"Schumann resonance and collective consciousness" |
|
] |
|
|
|
API_KEYS = { |
|
"openai": "sk-...", |
|
"firecrawl": "fc-..." |
|
} |
|
|
|
print(""" |
|
βββ βββββββββββββββββ ββββββββ βββββββ ββββ ββββββββββββ βββββββ ββββββ |
|
βββ βββββββββββββββββ ββββββββββββββββββββββ βββββββββββββββββββββ ββββββββ |
|
βββ βββββββββ ββββββ ββββββ βββ ββββββββββββββββββββ βββ ββββββββββββ |
|
ββββ ββββββββββ ββββββ ββββββ βββ ββββββββββββββββββββ βββ βββββββββββ |
|
βββββββ βββ βββββββββββββββββββββββββββββββ βββ βββββββββββββββββββββββ βββ |
|
βββββ βββ βββββββββββββββββββ βββββββ βββ βββββββββββ βββββββ βββ βββ |
|
""") |
|
print("=== VEIL ENGINE Ξ© CORE ACTIVATION ===") |
|
print(f"Initialized with Divine Authority {DIVINE_AUTHORITY}") |
|
print(f"Research Topics: {RESEARCH_TOPICS}") |
|
asyncio.run(eternal_operation(RESEARCH_TOPICS, API_KEYS)) |