File size: 1,739 Bytes
7fe339b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: mit
datasets:
- vector-institute/open-pmc
metrics:
- accuracy
- f1
- recall
---
<div align="center">
    <img src="https://github.com/VectorInstitute/pmc-data-extraction/blob/0a969136344a07267bb558d01f3fe76b36b93e1a/media/open-pmc-pipeline.png?raw=true" 
     alt="Open-PMC Pipeline" 
     width="1000" />
</div>

<p align="center">
  <strong>Arxiv:</strong> <a href="http://arxiv.org/abs/2503.14377" target="_blank">Arxiv</a> 
  &nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;&nbsp;
 <strong>Code:</strong> <a href="https://github.com/VectorInstitute/pmc-data-extraction" target="_blank">Open-PMC Github</a>
  &nbsp;&nbsp;&nbsp;&nbsp;|&nbsp;&nbsp;&nbsp;&nbsp;
 <strong>Dataset:</strong> <a href="https://huggingface.co/datasets/vector-institute/open-pmc" target="_blank">Hugging Face</a>
 </p>


## Model Overview

This model is a checkpoint trained on the **Open-PMC** dataset. It utilizes a **Vision Transformer (ViT-base16)** as the backbone for visual feature extraction and **PubMedBERT** for processing text data. The model is trained using **Contrastive Learning** with the **vanilla Info-NCE loss** to learn meaningful representations across different modalities.

## Model Architecture

- **Vision Backbone**: ViT-B/16 (Pretrained on ImageNet)
- **Text Backbone**: PubMedBERT (Pretrained on PubMedCentral Abstracts)
- **Training Objective**: Contrastive Learning with **Info-NCE Loss**

## Training Framework

The model was trained using the **mmlearn** framework, which is designed for multimodal learning. You can find more information and access the framework [here](https://github.com/vectorInstitute/mmlearn).

## How to Use

Please visit out GitHub for information on how to run benchmarking using this checkpoint