from typing import Dict, Any, List import logging from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftConfig, PeftModel import torch.cuda dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0]==8 else torch.float16 # LOGGER = logging.getLogger(__name__) # logging.basicConfig(level=logging.INFO) # device = "cuda" if torch.cuda.is_available() else "cpu" class EndpointHandler(): def __init__(self, path=""): tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, device_map="auto", load_in_8bit=True, torch_dtype=dtype, trust_remote_code=True, ) generation_config = model.generation_config generation_config.max_new_tokens=512 generation_config.temperation = 0 generation_config.num_return_sequences=1 generation_config.pad_token_id = tokenizer.eos_token_id generation_config.eos_token_id = tokenizer.eos_token_id self.generation_config = generation_config self.pipeline = transformers.pipeline( "text-generation",model=model,tokenizer=tokenizer ) # config = PeftConfig.from_pretrained(path) # model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map='auto') # self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # # Load the Lora model # self.model = PeftModel.from_pretrained(model, path) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # """ # Args: # data (Dict): The payload with the text prompt and generation parameters. # """ # LOGGER.info(f"Received data: {data}") # Get inputs prompt = data.pop("inputs", None) # parameters = data.pop("parameters", None) # if prompt is None: # raise ValueError("Missing prompt.") # # Preprocess # input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(device) # # Forward # LOGGER.info(f"Start generation.") # if parameters is not None: # output = self.model.generate(input_ids=input_ids, **parameters) # else: # output = self.model.generate(input_ids=input_ids) # # Postprocess # prediction = self.tokenizer.decode(output[0]) # LOGGER.info(f"Generated text: {prediction}") # return {"generated_text": prediction} result = self.pipeline(prompt,generation_config=self.generation_config) return result