moondream2 / hf_moondream.py
vikhyatk's picture
Upload HfMoondream
235555c verified
import torch
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig
from typing import Union
from .config import MoondreamConfig
from .moondream import MoondreamModel
# Files sometimes don't get loaded without these...
from .image_crops import *
from .vision import *
from .text import *
from .region import *
from .utils import *
def extract_question(text):
prefix = "<image>\n\nQuestion: "
suffix = "\n\nAnswer:"
if text.startswith(prefix) and text.endswith(suffix):
return text[len(prefix) : -len(suffix)]
else:
return None
class HfConfig(PretrainedConfig):
_auto_class = "AutoConfig"
model_type = "moondream1"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.config = {}
class HfMoondream(PreTrainedModel):
_auto_class = "AutoModelForCausalLM"
config_class = HfConfig
def __init__(self, config):
super().__init__(config)
self.model = MoondreamModel(
MoondreamConfig.from_dict(config.config), setup_caches=False
)
self._is_kv_cache_setup = False
def _setup_caches(self):
if not self._is_kv_cache_setup:
self.model._setup_caches()
self._is_kv_cache_setup = True
@property
def encode_image(self):
self._setup_caches()
return self.model.encode_image
@property
def query(self):
self._setup_caches()
return self.model.query
@property
def caption(self):
self._setup_caches()
return self.model.caption
@property
def detect(self):
self._setup_caches()
return self.model.detect
@property
def point(self):
self._setup_caches()
return self.model.point
@property
def detect_gaze(self):
self._setup_caches()
return self.model.detect_gaze
def answer_question(
self,
image_embeds,
question,
tokenizer=None,
chat_history="",
result_queue=None,
max_new_tokens=256,
**kwargs
):
answer = self.query(image_embeds, question)["answer"].strip()
if result_queue is not None:
result_queue.put(answer)
return answer
def batch_answer(self, images, prompts, tokenizer=None, **kwargs):
answers = []
for image, prompt in zip(images, prompts):
answers.append(self.query(image, prompt)["answer"].strip())
return answers
def _unsupported_exception(self):
raise NotImplementedError(
"This method is not supported in the latest version of moondream. "
"Consider upgrading to the updated API spec, or alternately pin "
"to 'revision=2024-08-26'."
)
def generate(self, image_embeds, prompt, tokenizer, max_new_tokens=128, **kwargs):
"""
Function definition remains unchanged for backwards compatibility.
Be aware that tokenizer, max_new_takens, and kwargs are ignored.
"""
prompt_extracted = extract_question(prompt)
if prompt_extracted is not None:
answer = self.model.query(
image=image_embeds, question=prompt_extracted, stream=False
)["answer"]
else:
image_embeds = self.encode_image(image_embeds)
prompt_tokens = torch.tensor(
[self.model.tokenizer.encode(prompt).ids],
device=self.device,
)
def generator():
for token in self.model._generate_answer(
prompt_tokens,
image_embeds.kv_cache,
image_embeds.pos,
max_new_tokens,
):
yield token
answer = "".join(list(generator()))
return [answer]
def get_input_embeddings(self) -> nn.Embedding:
"""
Lazily wrap the raw parameter `self.model.text.wte` in a real
`nn.Embedding` layer so that HF mix-ins recognise it. The wrapper
**shares** the weight tensor—no copy is made.
"""
if not hasattr(self, "_input_embeddings"):
self._input_embeddings = nn.Embedding.from_pretrained(
self.model.text.wte, # tensor created in text.py
freeze=True, # set to False if you need it trainable
)
return self._input_embeddings
def set_input_embeddings(self, value: Union[nn.Embedding, nn.Module]) -> None:
"""
Lets HF functions (e.g. `resize_token_embeddings`) replace or resize the
embeddings and keeps everything tied to `self.model.text.wte`.
"""
# 1. point the low-level parameter to the new weight matrix
self.model.text.wte = value.weight
# 2. keep a reference for get_input_embeddings()
self._input_embeddings = value
def input_embeds(
self,
input_ids: Union[torch.LongTensor, list, tuple],
*,
device: torch.device | None = None
) -> torch.FloatTensor:
"""
Back-compat wrapper that turns token IDs into embeddings.
Example:
ids = torch.tensor([[1, 2, 3]])
embeds = model.input_embeds(ids) # (1, 3, hidden_dim)
"""
if not torch.is_tensor(input_ids):
input_ids = torch.as_tensor(input_ids)
if device is not None:
input_ids = input_ids.to(device)
return self.get_input_embeddings()(input_ids)