Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc
|
3 |
+
datasets:
|
4 |
+
- vikp/reverse_instruct
|
5 |
+
---
|
6 |
+
This model will generate instructions given some text. It is useful for labelling unlabeled datasets. It's based on a llama 7B model with 32k context length (togethercomputer/LLaMA-2-7B-32K).
|
7 |
+
|
8 |
+
It was trained across the [reverse-instruct](https://huggingface.co/vikp/reverse_instruct) dataset for 2 epochs. Final validation loss was .72, with rouge-l of .66 .
|
9 |
+
|
10 |
+
Here is an inference example:
|
11 |
+
|
12 |
+
```
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
model = AutoModelForCausalLM.from_pretrained("vikp/reverse_instruct")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("vikp/reverse_instruct")
|
17 |
+
|
18 |
+
prompt = """
|
19 |
+
Output
|
20 |
+
|
21 |
+
int i,j; for (i=0;i<numbers.size();i++) for (j=i+1;j<numbers.size();j++) if (abs(numbers[i]-numbers[j])<threshold) return true; return false; }
|
22 |
+
|
23 |
+
======
|
24 |
+
Instruction
|
25 |
+
|
26 |
+
""".strip()
|
27 |
+
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
29 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
30 |
+
texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
31 |
+
print(texts)
|
32 |
+
```
|
33 |
+
|
34 |
+
And the output instruction for the above example would be `Write a C++ program to find the closest pair of numbers in an array.`.
|