File size: 3,128 Bytes
47065d8
 
d194105
 
 
 
 
 
 
 
 
 
 
47065d8
 
d194105
47065d8
d194105
47065d8
d194105
47065d8
 
 
 
 
d194105
 
 
 
 
 
47065d8
d194105
47065d8
d194105
47065d8
d194105
47065d8
 
 
 
 
d194105
47065d8
 
 
d194105
 
 
47065d8
d194105
47065d8
 
 
d194105
 
 
47065d8
 
 
d194105
47065d8
d194105
47065d8
 
 
d194105
 
47065d8
d194105
 
47065d8
d194105
 
 
47065d8
d194105
47065d8
d194105
 
 
47065d8
d194105
47065d8
d194105
 
47065d8
d194105
47065d8
d194105
47065d8
d194105
47065d8
d194105
47065d8
d194105
 
 
 
 
 
 
 
47065d8
d194105
 
47065d8
d194105
47065d8
d194105
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
library_name: transformers
tags:
- big-five
- regression
- psychology
- transformer
- text-analysis
license: mit
datasets:
- jingjietan/essays-big5
language:
- en
---

# 🧠 Big Five Personality Regression Model

This model predicts Big Five personality traits — Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism — from English free-text inputs. The output is a set of five continuous values between 0.0 and 1.0, corresponding to each trait.

---

## Model Details

### Model Description

- **Developed by:** [vladinc](https://huggingface.co/vladinc)
- **Model type:** `distilbert-base-uncased`, fine-tuned
- **Language(s):** English
- **License:** MIT
- **Finetuned from model:** `distilbert-base-uncased`
- **Trained on:** ~8,700 essays from the `jingjietan/essays-big5` dataset

### Model Sources

- **Repository:** [https://huggingface.co/vladinc/bigfive-regression-model](https://huggingface.co/vladinc/bigfive-regression-model)

---

## Uses

### Direct Use

This model can be used to estimate personality profiles from user-written text. It may be useful in psychological analysis, conversational profiling, or educational feedback systems.

### Out-of-Scope Use

- Not intended for clinical or diagnostic use.
- Should not be used to make hiring, legal, or psychological decisions.
- Not validated across cultures or demographic groups.

---

## Bias, Risks, and Limitations

- Trained on essay data; generalizability to tweets, messages, or other short-form texts may be limited.
- Traits like Extraversion and Neuroticism had higher validation MSE, suggesting reduced predictive reliability.
- Cultural and linguistic biases in training data may influence predictions.

### Recommendations

Do not use predictions from this model in isolation. Supplement with human judgment and/or other assessment tools.

---

## How to Get Started with the Model

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained("vladinc/bigfive-regression-model")
tokenizer = AutoTokenizer.from_pretrained("vladinc/bigfive-regression-model")

text = "I enjoy reflecting on abstract concepts and trying new things."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

print(outputs.logits)  # 5 float scores between 0.0 and 1.0

Training Details
Training Data
Dataset: jingjietan/essays-big5

Format: Essay text + 5 numeric labels for personality traits

Training Procedure
Epochs: 3

Batch size: 8

Learning rate: 2e-5

Loss Function: Mean Squared Error

Metric for Best Model: MSE on Openness

Evaluation
Metrics
Trait	Validation MSE
Openness	0.324
Conscientiousness	0.537
Extraversion	0.680
Agreeableness	0.441
Neuroticism	0.564

Citation
If you use this model, please cite it:

BibTeX:

bibtex
Copy
Edit
@misc{vladinc2025bigfive,
  title={Big Five Personality Regression Model},
  author={vladinc},
  year={2025},
  howpublished={\\url{https://huggingface.co/vladinc/bigfive-regression-model}}
}
Contact
If you have questions or suggestions, feel free to reach out via the Hugging Face profile.