File size: 17,848 Bytes
19649d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import List, Optional, Tuple, Union
import torch
import torchaudio
from torch import nn
from transformers import (
AutoModel,
AutoModelForCausalLM,
Cache,
Gemma3Config,
PreTrainedModel,
PretrainedConfig, StaticCache, HybridCache,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.gemma3.modeling_gemma3 import (
Gemma3CausalLMOutputWithPast,
Gemma3ForConditionalGeneration,
Gemma3RMSNorm,
)
from transformers.utils import is_torchdynamo_compiling, logging
from .speech_conformer_encoder import ConformerEncoder
logger = logging.get_logger(__name__)
class Gemma3AudioProjectorConfig(PretrainedConfig):
model_type = "gemma3_audio"
def __init__(
self,
hidden_size: int = 1024,
num_hidden_layers: int = 24,
sample_rate: int = 16_000,
n_mels: int = 80,
audio_token_id: int = 0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.sample_rate = sample_rate
self.n_mels = n_mels
self.audio_token_id = audio_token_id
class Gemma3AudioProjector(PreTrainedModel):
"""Conformer-based audio encoder β project to LM hidden-dim."""
config_class = Gemma3AudioProjectorConfig
base_model_prefix = "audio_projector"
def __init__(self, config: Gemma3AudioProjectorConfig):
super().__init__(config)
# encoder_config = config.audio_processor.get("config", None)
encoder_config = {
"activation": "swish",
"activation_checkpointing": {
"interval": 1,
"module": "transformer",
"offload": False
},
"attention_dim": 1024,
"attention_heads": 16,
"batch_norm": False,
"bias_in_glu": True,
"causal": True,
"chunk_size": -1,
"cnn_layer_norm": True,
"conv_activation": "swish",
"conv_glu_type": "swish",
"depthwise_multiplier": 1,
"depthwise_seperable_out_channel": 1024,
"dropout_rate": 0.0,
"encoder_embedding_config": {
"input_size": 80
},
"ext_pw_kernel_size": 1,
"ext_pw_out_channel": 1024,
"input_layer": "nemo_conv",
"input_size": 80,
"kernel_size": 3,
"left_chunk": 18,
"linear_units": 1536,
"nemo_conv_settings": {
"conv_channels": 1024
},
"num_blocks": 24,
"relative_attention_bias_args": {
"t5_bias_max_distance": 500,
"type": "t5"
},
"time_reduction": 8
}
self.encoder = ConformerEncoder(**encoder_config)
self.mel = torchaudio.transforms.MelSpectrogram(
sample_rate=config.sample_rate, n_mels=config.n_mels
)
self.proj = nn.Linear(1024, config.hidden_size, bias=False)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.post_init()
# ---------- helpers ----------
def wav2mel(self, wav: torch.Tensor) -> torch.Tensor:
return self.mel(wav).clamp(min=1e-5).log().transpose(1, 2)
# ---------- forward ----------
@torch.no_grad()
def forward(self, wav: torch.Tensor) -> torch.Tensor: # (B,T) or (B,1,T)
if wav.dim() == 3:
wav = wav.squeeze(1)
mel = self.wav2mel(wav)
lengths = torch.full(
(mel.size(0),), mel.size(1), dtype=torch.long, device=mel.device
)
hidden = self.encoder(mel, lengths)
hidden = self.proj(hidden)
return self.layer_norm(hidden)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Vision projector (θεηδΈθ΄οΌεͺζΉ dtype)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class Gemma3VisionProjector(nn.Module):
def __init__(self, config: Gemma3Config):
super().__init__()
self.mm_input_projection_weight = nn.Parameter(
torch.zeros(config.vision_config.hidden_size, config.text_config.hidden_size)
)
self.mm_soft_emb_norm = Gemma3RMSNorm(
config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps
)
self.patches_per_image = config.vision_config.image_size // config.vision_config.patch_size
self.tokens_per_side = int(config.mm_tokens_per_image ** 0.5)
self.kernel_size = self.patches_per_image // self.tokens_per_side
self.avg_pool = nn.AvgPool2d(kernel_size=self.kernel_size, stride=self.kernel_size)
def forward(self, vision_outputs: torch.Tensor):
b, _, seq_len = vision_outputs.shape
x = vision_outputs.transpose(1, 2).reshape(
b, seq_len, self.patches_per_image, self.patches_per_image
)
x = self.avg_pool(x).flatten(2).transpose(1, 2)
x = self.mm_soft_emb_norm(x)
return torch.matmul(x, self.mm_input_projection_weight).type_as(vision_outputs)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Gemma-3 Multimodal wrapper
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class Gemma3OmniForConditionalGeneration(Gemma3ForConditionalGeneration):
"""Gemma-3 OmniοΌvision + audio + text causal LM."""
def __init__(self, config: Gemma3Config):
super().__init__(config)
# ---- sub-modules
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.multi_modal_projector = Gemma3VisionProjector(config)
self.audio_projector = Gemma3AudioProjector(
Gemma3AudioProjectorConfig(hidden_size=config.text_config.hidden_size)
)
self.vocab_size = config.text_config.vocab_size
language_model = AutoModelForCausalLM.from_config(config=config.text_config)
if language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
self.language_model = language_model
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
self.post_init()
# ---------- helper ----------
def get_audio_features(self, audio_values: torch.Tensor) -> torch.Tensor:
return self.audio_projector(audio_values)
def _update_causal_mask(
self,
attention_mask,
token_type_ids,
past_key_values,
cache_position,
input_tensor,
is_training: bool = False,
):
if self.config.text_config._attn_implementation == "flash_attention_2":
return attention_mask
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted
# form and requires no inversion or slicing.
return attention_mask
using_static_cache = isinstance(past_key_values, StaticCache)
min_dtype = torch.finfo(self.dtype).min
inputs_lead_dim, sequence_length = input_tensor.shape[:2]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
elif isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else cache_position[0] + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
return attention_mask
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
)
# Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)
# Apply bidirectional mask on images if token type ids are provided
if token_type_ids is not None and sequence_length != 1:
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
token_type_mask[token_type_ids == 0] = False # if text token do not change anything
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
causal_mask = causal_mask.clone()
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
token_type_mask, 0.0
)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
# Then apply padding mask (will mask pad tokens)
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
# ---------- forward ----------
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
audio_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
# === input validation ===
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("Exactly one of input_ids or inputs_embeds must be provided")
output_attentions = (
output_attentions if output_attentions is not None else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
is_training = token_type_ids is not None and labels is not None
# OOV image token β pad
if input_ids is not None and self.config.image_token_id >= self.vocab_size:
special_image_mask = input_ids == self.config.image_token_id
llm_input_ids = input_ids.clone()
llm_input_ids[special_image_mask] = 0
else:
llm_input_ids = input_ids
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(llm_input_ids)
# cache_position
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
# === merge image ===
if pixel_values is not None:
image_feat = self.get_image_features(pixel_values)
special_image_mask = (
(
inputs_embeds
== self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, device=inputs_embeds.device)
)
)
if input_ids is None
else (
input_ids == self.config.image_token_id
).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
)
if (
not is_torchdynamo_compiling()
and inputs_embeds[special_image_mask].numel() != image_feat.numel()
):
raise ValueError("#image tokens β #embedding slots")
inputs_embeds = inputs_embeds.masked_scatter(
special_image_mask, image_feat.to(inputs_embeds)
)
# === merge audio ===
if audio_values is not None:
audio_feat = self.get_audio_features(audio_values)
# special_audio_mask = (
# (
# inputs_embeds
# == self.get_input_embeddings()(
# torch.tensor(self.config.audio_token_id, device=inputs_embeds.device)
# )
# )
# if input_ids is None
# else (
# input_ids == self.config.audio_token_id
# ).unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
# )
# if (
# not is_torchdynamo_compiling()
# and inputs_embeds[special_audio_mask].numel() != audio_feat.numel()
# ):
# raise ValueError("#audio tokens β #embedding slots")
# inputs_embeds = inputs_embeds.masked_scatter(
# special_audio_mask, audio_feat.to(inputs_embeds)
# )
print(audio_feat.shape, inputs_embeds.shape)
inputs_embeds = torch.cat([audio_feat, inputs_embeds], dim=1)
# === label masking ===
if labels is not None and self.pad_token_id in labels:
logger.warning_once(
"`labels` contains `pad_token_id`; they will be masked out at loss computation."
)
labels = torch.where(
input_ids == self.pad_token_id, self.config.ignore_index, labels
)
causal_mask = self._update_causal_mask(
attention_mask,
token_type_ids,
past_key_values,
cache_position,
inputs_embeds,
is_training,
)
outputs: CausalLMOutputWithPast = self.language_model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
# === loss ===
logits = outputs.logits
loss = None
if labels is not None:
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
shift_attention_mask = attention_mask[:, -shift_logits.shape[1]:].to(
logits.device
)
shift_logits = shift_logits[shift_attention_mask != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask != 0].contiguous()
loss = nn.CrossEntropyLoss()(
shift_logits.view(-1, self.config.text_config.vocab_size),
shift_labels.view(-1),
)
return Gemma3CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_feat if pixel_values is not None else None,
)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# exports
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
__all__ = [
"Gemma3AudioProjectorConfig",
"Gemma3AudioProjector",
"Gemma3VisionProjector",
"Gemma3OmniForConditionalGeneration",
]
|