Update processing_gemma3_omni.py
Browse files- processing_gemma3_omni.py +406 -305
processing_gemma3_omni.py
CHANGED
@@ -1,30 +1,24 @@
|
|
1 |
import re
|
2 |
-
from typing import List, Optional, Union, Dict, Any
|
3 |
|
4 |
import math
|
5 |
import numpy as np
|
6 |
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
-
|
10 |
-
|
11 |
-
# but for now, let's define a clear supported set.
|
12 |
-
# from transformers.audio_utils import AudioInput as HfAudioInput, load_audio
|
13 |
-
# For this fix, we define AudioInput locally for clarity on what's handled.
|
14 |
-
AudioInput = Union[np.ndarray, List[float], Tuple[np.ndarray, int]]
|
15 |
-
|
16 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
17 |
from transformers.feature_extraction_utils import BatchFeature
|
18 |
-
from transformers.
|
|
|
19 |
from transformers.utils import TensorType, to_py_obj, logging
|
20 |
-
# For AutoImageProcessor, AutoTokenizer if needed for default loading
|
21 |
-
from transformers import AutoImageProcessor, AutoTokenizer
|
22 |
|
23 |
-
# Constants
|
24 |
DEFAULT_SAMPLING_RATE = 16000
|
25 |
DEFAULT_N_FFT = 512
|
26 |
-
DEFAULT_WIN_LENGTH = 400
|
27 |
-
DEFAULT_HOP_LENGTH = 160
|
28 |
DEFAULT_N_MELS = 80
|
29 |
DEFAULT_COMPRESSION_RATE = 4
|
30 |
DEFAULT_QFORMER_RATE = 2
|
@@ -32,59 +26,56 @@ DEFAULT_FEAT_STRIDE = 4
|
|
32 |
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
|
33 |
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
|
34 |
DEFAULT_MAX_LENGTH = 16384
|
35 |
-
LOG_MEL_CLIP_EPSILON = 1e-5
|
36 |
|
37 |
logger = logging.get_logger(__name__)
|
38 |
|
39 |
|
40 |
-
# create_mel_filterbank function (assuming it's correctly defined from previous response)
|
41 |
-
# ... (create_mel_filterbank function from the previous corrected response) ...
|
42 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
43 |
fmax: Optional[float] = None) -> np.ndarray:
|
44 |
-
"""Create Mel filterbank for audio processing."""
|
45 |
-
fmax = fmax or sampling_rate / 2.0
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
def hz_to_mel(f: float) -> float: # Using HTK formula (as in librosa default)
|
51 |
-
return 2595.0 * math.log10(1 + f / 700.0)
|
52 |
-
|
53 |
-
def mel_to_hz(mel: float) -> float:
|
54 |
-
return 700.0 * (10 ** (mel / 2595.0) - 1)
|
55 |
|
56 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
57 |
-
freq_points =
|
|
|
58 |
|
|
|
59 |
freq_points = np.clip(freq_points, 0, sampling_rate / 2.0)
|
60 |
-
|
|
|
|
|
61 |
bins = np.clip(bins, 0, n_fft // 2)
|
62 |
|
63 |
-
filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
|
64 |
-
for m in range(n_mels):
|
65 |
-
left, center, right = bins[m], bins[m + 1], bins[m + 2]
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
if center > left:
|
69 |
-
filterbank[
|
70 |
if right > center:
|
71 |
-
filterbank[
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
if left == center and right > center: # only falling slope
|
78 |
-
# Ensure it doesn't double-dip if already set
|
79 |
-
pass
|
80 |
-
elif right == center and left < center: # only rising slope
|
81 |
-
pass
|
82 |
|
83 |
return filterbank
|
84 |
|
85 |
|
86 |
-
# Gemma3AudioFeatureExtractor class (assuming it's correctly defined from previous response)
|
87 |
-
# ... (Gemma3AudioFeatureExtractor class from the previous corrected response) ...
|
88 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
89 |
model_input_names = ["audio_values", "audio_attention_mask"]
|
90 |
|
@@ -93,168 +84,221 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
93 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
94 |
qformer_rate: int = DEFAULT_QFORMER_RATE,
|
95 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
96 |
-
sampling_rate: int = DEFAULT_SAMPLING_RATE,
|
97 |
n_fft: int = DEFAULT_N_FFT,
|
98 |
win_length: Optional[int] = None,
|
99 |
hop_length: Optional[int] = None,
|
100 |
n_mels: int = DEFAULT_N_MELS,
|
101 |
-
f_min: float = 0.0,
|
102 |
-
f_max: Optional[float] = None,
|
103 |
-
padding_value: float = 0.0,
|
104 |
**kwargs
|
105 |
):
|
106 |
-
|
107 |
-
|
108 |
-
kwargs.pop("padding_value", None)
|
109 |
|
|
|
110 |
super().__init__(
|
111 |
feature_size=n_mels,
|
112 |
-
sampling_rate=sampling_rate,
|
113 |
-
padding_value=
|
114 |
**kwargs
|
115 |
)
|
116 |
-
|
117 |
self.compression_rate = compression_rate
|
118 |
self.qformer_rate = qformer_rate
|
119 |
self.feat_stride = feat_stride
|
|
|
|
|
120 |
self.n_fft = n_fft
|
121 |
-
self.win_length =
|
122 |
-
self.hop_length =
|
123 |
self.n_mels = n_mels
|
124 |
self.f_min = f_min
|
125 |
-
self.f_max = f_max
|
126 |
|
127 |
if self.win_length > self.n_fft:
|
128 |
logger.warning(
|
129 |
f"win_length ({self.win_length}) is greater than n_fft ({self.n_fft}). "
|
130 |
-
|
131 |
)
|
132 |
-
self.window = scipy.signal.get_window("hann", self.win_length)
|
133 |
self.mel_filterbank = create_mel_filterbank(
|
134 |
self.sampling_rate, self.n_fft, self.n_mels, fmin=self.f_min, fmax=self.f_max
|
135 |
-
).T
|
|
|
136 |
|
137 |
def __call__(
|
138 |
self,
|
139 |
-
audios: Union[AudioInput, List[AudioInput]],
|
140 |
-
sampling_rate: Optional[int] = None,
|
141 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
142 |
) -> BatchFeature:
|
143 |
-
|
144 |
if not isinstance(audios, list):
|
145 |
audios = [audios]
|
146 |
|
147 |
-
|
148 |
actual_mel_lengths: List[int] = []
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
for
|
153 |
-
|
154 |
source_sr: int
|
155 |
|
156 |
-
if isinstance(
|
157 |
-
|
158 |
-
|
159 |
-
elif isinstance(
|
160 |
-
|
161 |
if sampling_rate is None:
|
162 |
raise ValueError(
|
163 |
-
"sampling_rate must be provided if audio inputs are raw numpy arrays or lists."
|
164 |
)
|
165 |
source_sr = sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
else:
|
167 |
raise TypeError(
|
168 |
-
f"Unsupported audio input type: {type(
|
169 |
-
"
|
170 |
)
|
171 |
-
|
172 |
-
|
173 |
-
mel_spectrogram = self._compute_log_mel_spectrogram(
|
174 |
-
|
175 |
-
feature_tensor = torch.from_numpy(mel_spectrogram)
|
176 |
-
|
177 |
-
actual_mel_lengths.append(feature_tensor.shape[0])
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
output_data = {
|
189 |
-
"audio_values":
|
190 |
-
"audio_attention_mask":
|
191 |
}
|
192 |
|
193 |
-
if
|
194 |
-
|
|
|
|
|
195 |
|
196 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
197 |
|
198 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
|
|
199 |
if wav.dtype not in [np.float32, np.float64]:
|
200 |
if np.issubdtype(wav.dtype, np.integer):
|
201 |
-
max_val = np.iinfo(wav.dtype).max
|
202 |
wav = wav.astype(np.float32) / max_val
|
203 |
else:
|
204 |
wav = wav.astype(np.float32)
|
|
|
|
|
205 |
|
206 |
if wav.ndim > 1:
|
207 |
-
wav = wav.mean(axis=0)
|
208 |
-
|
209 |
if source_sr != self.sampling_rate:
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
215 |
wav = scipy.signal.resample_poly(wav, up=up_factor, down=down_factor)
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
220 |
return wav
|
221 |
|
222 |
def _compute_log_mel_spectrogram(self, wav: np.ndarray) -> np.ndarray:
|
223 |
if len(wav) < self.win_length:
|
|
|
224 |
padding = self.win_length - len(wav)
|
225 |
wav = np.pad(wav, (0, padding), mode='constant', constant_values=0.0)
|
226 |
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
if num_frames <= 0:
|
229 |
-
logger.warning(
|
230 |
-
|
|
|
231 |
return np.zeros((0, self.n_mels), dtype=np.float32)
|
232 |
|
233 |
-
|
|
|
|
|
234 |
wav,
|
235 |
shape=(num_frames, self.win_length),
|
236 |
-
strides=(
|
237 |
writeable=False
|
238 |
)
|
|
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
245 |
log_mel_spectrogram = np.log(mel_spectrogram)
|
246 |
-
|
247 |
return log_mel_spectrogram.astype(np.float32)
|
248 |
|
249 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
|
|
250 |
compressed = math.ceil(frame_count / self.compression_rate)
|
251 |
return math.ceil(compressed / self.qformer_rate)
|
252 |
|
253 |
|
254 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
images_kwargs: Dict[str, Any]
|
256 |
audio_kwargs: Dict[str, Any]
|
257 |
-
text_kwargs
|
|
|
258 |
_defaults = {
|
259 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
260 |
"images_kwargs": {},
|
@@ -264,230 +308,282 @@ class Gemma3DummyProcessorKwargs(ProcessingKwargs, total=False): # Dummy for te
|
|
264 |
|
265 |
class Gemma3OmniProcessor(ProcessorMixin):
|
266 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
267 |
-
valid_kwargs = ["chat_template", "image_seq_length"]
|
268 |
-
image_processor_class = "AutoImageProcessor"
|
269 |
-
audio_processor_class = "AutoFeatureExtractor"
|
270 |
-
tokenizer_class = "AutoTokenizer"
|
271 |
|
272 |
-
#
|
273 |
-
|
|
|
|
|
274 |
|
275 |
def __init__(
|
276 |
self,
|
277 |
-
|
278 |
-
audio_processor
|
279 |
-
|
280 |
chat_template=None,
|
281 |
image_seq_length: int = 256,
|
282 |
-
|
283 |
-
audio_prompt_qformer_rate: int = 1,
|
284 |
-
audio_prompt_feat_stride: int = 1,
|
285 |
-
audio_placeholder_token: str = "<|audio_placeholder|>",
|
286 |
-
audio_soft_token_str: str = "<audio_soft_token>",
|
287 |
-
**kwargs
|
288 |
):
|
289 |
-
#
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
#
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
super().__init__(
|
319 |
image_processor=image_processor,
|
320 |
audio_processor=audio_processor,
|
321 |
tokenizer=tokenizer,
|
322 |
chat_template=chat_template,
|
323 |
-
**kwargs
|
324 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
-
self.image_seq_length = image_seq_length
|
327 |
-
self.image_token_id = getattr(self.tokenizer, "image_token_id",
|
328 |
-
self.tokenizer.unk_token_id if hasattr(self.tokenizer, "unk_token_id") else None)
|
329 |
-
self.boi_token = getattr(self.tokenizer, "boi_token", "<|image|>")
|
330 |
-
self.image_token = getattr(self.tokenizer, "image_token", "<|image|>")
|
331 |
-
self.eoi_token = getattr(self.tokenizer, "eoi_token", "")
|
332 |
-
|
333 |
-
self.audio_placeholder_token = audio_placeholder_token
|
334 |
-
self.audio_soft_token_str = audio_soft_token_str
|
335 |
|
336 |
-
|
337 |
-
if self.audio_soft_token_id == self.tokenizer.unk_token_id: # Check if UNK
|
338 |
-
logger.warning(
|
339 |
-
f"The audio soft token string '{self.audio_soft_token_str}' maps to UNK token (ID: {self.audio_soft_token_id}). "
|
340 |
-
"Ensure it is added to the tokenizer's vocabulary as a special token."
|
341 |
-
)
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
self.
|
346 |
-
|
347 |
-
self.audio_prompt_feat_stride = audio_prompt_feat_stride
|
348 |
-
|
349 |
-
def _merge_kwargs(self, KwargsClassWithDefaults, tokenizer_init_kwargs, **kwargs_passed_to_call):
|
350 |
-
final_kwargs = {}
|
351 |
-
# Initialize with _defaults from the Kwargs class
|
352 |
-
# Ensure KwargsClassWithDefaults has a _defaults attribute
|
353 |
-
_defaults = getattr(KwargsClassWithDefaults, "_defaults", {})
|
354 |
-
for modality_key, default_modality_kwargs in _defaults.items():
|
355 |
-
final_kwargs[modality_key] = default_modality_kwargs.copy()
|
356 |
-
|
357 |
-
# Override with tokenizer's init_kwargs if they exist for a given key
|
358 |
-
for modality_key, modality_dict in final_kwargs.items():
|
359 |
-
for key in list(modality_dict.keys()):
|
360 |
-
if key in tokenizer_init_kwargs:
|
361 |
-
modality_dict[key] = tokenizer_init_kwargs[key]
|
362 |
-
|
363 |
-
# Override with kwargs passed directly to __call__
|
364 |
-
for modality_key_from_call, modality_dict_from_call in kwargs_passed_to_call.items():
|
365 |
-
if modality_key_from_call in final_kwargs and isinstance(modality_dict_from_call, dict):
|
366 |
-
final_kwargs[modality_key_from_call].update(modality_dict_from_call)
|
367 |
-
# If a new modality_kwargs (e.g., "video_kwargs") is passed, add it
|
368 |
-
elif modality_key_from_call not in final_kwargs and isinstance(modality_dict_from_call, dict):
|
369 |
-
final_kwargs[modality_key_from_call] = modality_dict_from_call.copy()
|
370 |
-
|
371 |
-
# Specific handling for text_kwargs
|
372 |
-
if "text_kwargs" not in final_kwargs:
|
373 |
-
final_kwargs["text_kwargs"] = {} # Ensure it exists
|
374 |
-
final_kwargs["text_kwargs"]["truncation"] = final_kwargs["text_kwargs"].get("truncation", False)
|
375 |
-
final_kwargs["text_kwargs"]["max_length"] = final_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
|
376 |
-
|
377 |
-
return final_kwargs
|
378 |
-
|
379 |
-
def _compute_audio_prompt_token_count(self, actual_mel_frames_count: int) -> int:
|
380 |
-
scaled_frames = actual_mel_frames_count * self.audio_prompt_feat_stride
|
381 |
-
compressed_once = math.ceil(scaled_frames / self.audio_prompt_compression_rate)
|
382 |
-
compressed_twice = math.ceil(compressed_once / self.audio_prompt_qformer_rate)
|
383 |
-
return compressed_twice
|
384 |
|
385 |
def __call__(
|
386 |
self,
|
387 |
-
|
388 |
-
|
|
|
389 |
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
|
390 |
-
sampling_rate: Optional[int] = None,
|
391 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
392 |
-
**kwargs: Any
|
393 |
) -> BatchFeature:
|
394 |
-
|
395 |
-
if text is None and images is None and audios is None:
|
396 |
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
|
397 |
|
398 |
# Determine final return_tensors strategy
|
399 |
-
# Priority: 1. Explicit return_tensors, 2. from text_kwargs in **kwargs, 3. Default (PT)
|
400 |
final_rt = return_tensors
|
|
|
|
|
|
|
401 |
merged_call_kwargs = self._merge_kwargs(
|
402 |
-
|
403 |
-
self.tokenizer.init_kwargs if hasattr(self.tokenizer,
|
404 |
**kwargs
|
405 |
)
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
408 |
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
|
409 |
-
else:
|
410 |
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
|
411 |
|
412 |
-
|
|
|
|
|
413 |
num_samples = 0
|
414 |
if images is not None:
|
415 |
-
_images_list = images if isinstance(images, list) and (
|
416 |
-
not images or not isinstance(images[0], (int, float))) else [images]
|
417 |
num_samples = len(_images_list)
|
418 |
elif audios is not None:
|
419 |
_audios_list = audios if isinstance(audios, list) else [audios]
|
420 |
num_samples = len(_audios_list)
|
421 |
-
text = [""] * num_samples if num_samples > 0 else [""]
|
422 |
|
423 |
if isinstance(text, str):
|
424 |
text = [text]
|
425 |
-
|
426 |
-
raise ValueError("Input
|
427 |
|
|
|
428 |
image_features_dict = {}
|
429 |
if images is not None and self.image_processor is not None:
|
430 |
-
|
431 |
-
#
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
audio_features_dict = {}
|
437 |
if audios is not None and self.audio_processor is not None:
|
438 |
-
logger.info("Processing audio...")
|
439 |
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
|
440 |
-
if sampling_rate:
|
441 |
-
|
|
|
|
|
|
|
|
|
442 |
|
443 |
-
#
|
444 |
-
|
445 |
-
|
|
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
audio_sample_mel_lengths = to_py_obj(audio_features_dict["audio_attention_mask"].sum(axis=-1))
|
450 |
|
451 |
for i, prompt in enumerate(text):
|
452 |
-
num_soft_tokens = self.
|
453 |
-
audio_token_sequence_str = self.audio_soft_token_str * num_soft_tokens
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
prompt
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
def batch_decode(self, *args, **kwargs):
|
493 |
return self.tokenizer.batch_decode(*args, **kwargs)
|
@@ -496,12 +592,17 @@ class Gemma3OmniProcessor(ProcessorMixin):
|
|
496 |
return self.tokenizer.decode(*args, **kwargs)
|
497 |
|
498 |
@property
|
499 |
-
def model_input_names(self)
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
+
from typing import List, Optional, Union, Dict, Any
|
3 |
|
4 |
import math
|
5 |
import numpy as np
|
6 |
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
+
# Using the original AudioInput for minimal change from your provided code
|
10 |
+
from transformers.audio_utils import AudioInput # type: ignore
|
|
|
|
|
|
|
|
|
|
|
11 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
12 |
from transformers.feature_extraction_utils import BatchFeature
|
13 |
+
from transformers.image_utils import make_nested_list_of_images
|
14 |
+
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs # Removed Unpack as it's not standard
|
15 |
from transformers.utils import TensorType, to_py_obj, logging
|
|
|
|
|
16 |
|
17 |
+
# Constants
|
18 |
DEFAULT_SAMPLING_RATE = 16000
|
19 |
DEFAULT_N_FFT = 512
|
20 |
+
DEFAULT_WIN_LENGTH = 400
|
21 |
+
DEFAULT_HOP_LENGTH = 160
|
22 |
DEFAULT_N_MELS = 80
|
23 |
DEFAULT_COMPRESSION_RATE = 4
|
24 |
DEFAULT_QFORMER_RATE = 2
|
|
|
26 |
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
|
27 |
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
|
28 |
DEFAULT_MAX_LENGTH = 16384
|
29 |
+
LOG_MEL_CLIP_EPSILON = 1e-5 # Epsilon for log mel clipping
|
30 |
|
31 |
logger = logging.get_logger(__name__)
|
32 |
|
33 |
|
|
|
|
|
34 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
35 |
fmax: Optional[float] = None) -> np.ndarray:
|
36 |
+
"""Create Mel filterbank for audio processing. (User's version)"""
|
37 |
+
fmax = fmax or sampling_rate / 2.0 # Ensure float division
|
38 |
|
39 |
+
# User's Mel scale formula
|
40 |
+
def hz_to_mel(f: float) -> float:
|
41 |
+
return 1127.0 * math.log(1 + f / 700.0)
|
42 |
+
|
43 |
+
def mel_to_hz(mel: float) -> float: # Added for completeness if needed
|
44 |
+
return 700.0 * (math.exp(mel / 1127.0) - 1)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
48 |
+
# freq_points = 700.0 * (np.exp(mel_points / 1127.0) - 1) # Original
|
49 |
+
freq_points = mel_to_hz(mel_points) # Using the inverse function
|
50 |
|
51 |
+
# Clip freq_points to be within [0, sampling_rate/2]
|
52 |
freq_points = np.clip(freq_points, 0, sampling_rate / 2.0)
|
53 |
+
|
54 |
+
bins = np.floor((n_fft + 1) * freq_points / sampling_rate).astype(int)
|
55 |
+
# Ensure bins are within valid range for rfft output indices
|
56 |
bins = np.clip(bins, 0, n_fft // 2)
|
57 |
|
|
|
|
|
|
|
58 |
|
59 |
+
filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
|
60 |
+
for m_idx in range(n_mels): # Loop from 0 to n_mels-1 to fill filterbank[m_idx]
|
61 |
+
# Bins for (m_idx)-th filter are bins[m_idx], bins[m_idx+1], bins[m_idx+2]
|
62 |
+
left, center, right = bins[m_idx], bins[m_idx + 1], bins[m_idx + 2]
|
63 |
+
|
64 |
+
# Original logic for applying triangular filter
|
65 |
+
# Ensure no division by zero if points coincide
|
66 |
if center > left:
|
67 |
+
filterbank[m_idx, left:center] = (np.arange(left, center) - left) / (center - left)
|
68 |
if right > center:
|
69 |
+
filterbank[m_idx, center:right] = (right - np.arange(center, right)) / (right - center)
|
70 |
+
# If left=center or center=right, the corresponding slope is zero, which is implicitly handled.
|
71 |
+
# Ensure peak is 1.0 if center is a valid point within a slope.
|
72 |
+
if left <= center < right and center > left : # If center forms a peak of a valid triangle part
|
73 |
+
filterbank[m_idx, center] = 1.0
|
74 |
+
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
return filterbank
|
77 |
|
78 |
|
|
|
|
|
79 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
80 |
model_input_names = ["audio_values", "audio_attention_mask"]
|
81 |
|
|
|
84 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
85 |
qformer_rate: int = DEFAULT_QFORMER_RATE,
|
86 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
87 |
+
sampling_rate: int = DEFAULT_SAMPLING_RATE, # Target sampling rate
|
88 |
n_fft: int = DEFAULT_N_FFT,
|
89 |
win_length: Optional[int] = None,
|
90 |
hop_length: Optional[int] = None,
|
91 |
n_mels: int = DEFAULT_N_MELS,
|
92 |
+
f_min: float = 0.0, # Added for mel filterbank control
|
93 |
+
f_max: Optional[float] = None, # Added for mel filterbank control
|
94 |
+
padding_value: float = 0.0, # Explicitly define for clarity
|
95 |
**kwargs
|
96 |
):
|
97 |
+
_win_length = win_length if win_length is not None else n_fft
|
98 |
+
_hop_length = hop_length if hop_length is not None else _win_length // 4
|
|
|
99 |
|
100 |
+
# feature_size is n_mels for the superclass
|
101 |
super().__init__(
|
102 |
feature_size=n_mels,
|
103 |
+
sampling_rate=sampling_rate, # This sets self.sampling_rate
|
104 |
+
padding_value=padding_value,
|
105 |
**kwargs
|
106 |
)
|
107 |
+
|
108 |
self.compression_rate = compression_rate
|
109 |
self.qformer_rate = qformer_rate
|
110 |
self.feat_stride = feat_stride
|
111 |
+
# self.sampling_rate is now set by super()
|
112 |
+
|
113 |
self.n_fft = n_fft
|
114 |
+
self.win_length = _win_length
|
115 |
+
self.hop_length = _hop_length
|
116 |
self.n_mels = n_mels
|
117 |
self.f_min = f_min
|
118 |
+
self.f_max = f_max # Will be sampling_rate/2 if None in create_mel_filterbank call
|
119 |
|
120 |
if self.win_length > self.n_fft:
|
121 |
logger.warning(
|
122 |
f"win_length ({self.win_length}) is greater than n_fft ({self.n_fft}). "
|
123 |
+
"Window will be applied, then data will be zero-padded/truncated to n_fft by np.fft.rfft."
|
124 |
)
|
125 |
+
self.window = np.hamming(self.win_length).astype(np.float32) # Or scipy.signal.get_window("hann", self.win_length)
|
126 |
self.mel_filterbank = create_mel_filterbank(
|
127 |
self.sampling_rate, self.n_fft, self.n_mels, fmin=self.f_min, fmax=self.f_max
|
128 |
+
).T # Transpose for dot product: (n_fft // 2 + 1, n_mels)
|
129 |
+
|
130 |
|
131 |
def __call__(
|
132 |
self,
|
133 |
+
audios: Union[AudioInput, List[AudioInput]], # Accept single or list
|
134 |
+
sampling_rate: Optional[int] = None, # To specify SR if audios are raw arrays
|
135 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
136 |
) -> BatchFeature:
|
137 |
+
|
138 |
if not isinstance(audios, list):
|
139 |
audios = [audios]
|
140 |
|
141 |
+
processed_mels: List[torch.Tensor] = []
|
142 |
actual_mel_lengths: List[int] = []
|
143 |
+
|
144 |
+
# Kept from user's code - their purpose might be for token calculation downstream
|
145 |
+
sizes_for_embed_length: List[torch.Tensor] = []
|
146 |
+
frames_scaled_by_feat_stride: List[int] = []
|
147 |
|
148 |
+
for audio_item in audios:
|
149 |
+
current_wav: np.ndarray
|
150 |
source_sr: int
|
151 |
|
152 |
+
if isinstance(audio_item, tuple) and len(audio_item) == 2 and isinstance(audio_item[1], int):
|
153 |
+
current_wav, source_sr = audio_item
|
154 |
+
current_wav = np.asarray(current_wav, dtype=np.float32) # Ensure float32 numpy array
|
155 |
+
elif isinstance(audio_item, (np.ndarray, list)):
|
156 |
+
current_wav = np.asarray(audio_item, dtype=np.float32)
|
157 |
if sampling_rate is None:
|
158 |
raise ValueError(
|
159 |
+
"sampling_rate must be provided if audio inputs are raw numpy arrays or lists without sr."
|
160 |
)
|
161 |
source_sr = sampling_rate
|
162 |
+
# Add more robust loading for paths/bytes if transformers.audio_utils.load_audio is permissible
|
163 |
+
# Example:
|
164 |
+
# elif isinstance(audio_input, (str, bytes, Path)): # Path needs to be imported from pathlib
|
165 |
+
# current_wav, sr_dict = load_audio(audio_input_item) # Uses librosa or soundfile
|
166 |
+
# source_sr = sr_dict["sampling_rate"]
|
167 |
+
# current_wav = current_wav.astype(np.float32)
|
168 |
else:
|
169 |
raise TypeError(
|
170 |
+
f"Unsupported audio input type: {type(audio_item)}. "
|
171 |
+
"Expected np.ndarray, list of floats, or Tuple[np.ndarray, int]."
|
172 |
)
|
173 |
+
|
174 |
+
processed_wav_array = self._preprocess_audio(current_wav, source_sr)
|
175 |
+
mel_spectrogram = self._compute_log_mel_spectrogram(processed_wav_array) # Shape: (T_mel, N_Mels)
|
176 |
+
|
177 |
+
feature_tensor = torch.from_numpy(mel_spectrogram) # Already float32
|
178 |
+
processed_mels.append(feature_tensor)
|
179 |
+
actual_mel_lengths.append(feature_tensor.shape[0]) # T_mel for this item
|
180 |
+
|
181 |
+
# User's original logic for 'sizes' and 'frames'
|
182 |
+
sizes_for_embed_length.append(torch.tensor(self._calculate_embed_length(feature_tensor.shape[0])))
|
183 |
+
frames_scaled_by_feat_stride.append(feature_tensor.shape[0] * self.feat_stride)
|
184 |
+
|
185 |
+
# Pad the mel spectrograms to form a batch
|
186 |
+
audio_embeds = pad_sequence(processed_mels, batch_first=True, padding_value=self.padding_value)
|
187 |
+
# audio_embeds shape: (Batch, Max_T_mel, N_Mels)
|
188 |
+
|
189 |
+
# Create attention mask corresponding to the actual lengths of mel spectrograms
|
190 |
+
max_t_mel_in_batch = audio_embeds.shape[1]
|
191 |
+
current_device = audio_embeds.device # Get device from padded tensor if using PyTorch tensors earlier
|
192 |
+
|
193 |
+
# Create attention mask directly based on actual_mel_lengths
|
194 |
+
attention_mask = torch.zeros(len(audios), max_t_mel_in_batch, dtype=torch.bool, device=current_device)
|
195 |
+
for i, length in enumerate(actual_mel_lengths):
|
196 |
+
attention_mask[i, :length] = True
|
197 |
+
|
198 |
output_data = {
|
199 |
+
"audio_values": audio_embeds,
|
200 |
+
"audio_attention_mask": attention_mask # Correctly shaped mask for audio_values
|
201 |
}
|
202 |
|
203 |
+
# Include user's 'sizes' if they are needed downstream
|
204 |
+
if sizes_for_embed_length:
|
205 |
+
output_data["audio_values_sizes"] = torch.stack(sizes_for_embed_length)
|
206 |
+
# Note: 'frames_scaled_by_feat_stride' is a list of ints, handle conversion if needed in BatchFeature
|
207 |
|
208 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
209 |
|
210 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
211 |
+
# Ensure wav is float32
|
212 |
if wav.dtype not in [np.float32, np.float64]:
|
213 |
if np.issubdtype(wav.dtype, np.integer):
|
214 |
+
max_val = np.iinfo(wav.dtype).max if wav.size > 0 else 1.0 # Avoid error on empty array
|
215 |
wav = wav.astype(np.float32) / max_val
|
216 |
else:
|
217 |
wav = wav.astype(np.float32)
|
218 |
+
elif wav.dtype == np.float64:
|
219 |
+
wav = wav.astype(np.float32)
|
220 |
|
221 |
if wav.ndim > 1:
|
222 |
+
wav = wav.mean(axis=0) # Convert to mono
|
223 |
+
|
224 |
if source_sr != self.sampling_rate:
|
225 |
+
logger.info(f"Resampling audio from {source_sr} Hz to {self.sampling_rate} Hz.")
|
226 |
+
# Calculate integer up/down factors for resample_poly
|
227 |
+
common_divisor = math.gcd(self.sampling_rate, source_sr)
|
228 |
+
up_factor = self.sampling_rate // common_divisor
|
229 |
+
down_factor = source_sr // common_divisor
|
230 |
+
if up_factor != down_factor : # Only if actual resampling is needed
|
231 |
wav = scipy.signal.resample_poly(wav, up=up_factor, down=down_factor)
|
232 |
+
|
233 |
+
# Normalize amplitude to roughly [-1, 1]
|
234 |
+
max_abs_val = np.abs(wav).max()
|
235 |
+
if max_abs_val > 1e-7: # Avoid division by zero or tiny numbers
|
236 |
+
wav = wav / max_abs_val
|
237 |
return wav
|
238 |
|
239 |
def _compute_log_mel_spectrogram(self, wav: np.ndarray) -> np.ndarray:
|
240 |
if len(wav) < self.win_length:
|
241 |
+
# Pad if audio is shorter than one window
|
242 |
padding = self.win_length - len(wav)
|
243 |
wav = np.pad(wav, (0, padding), mode='constant', constant_values=0.0)
|
244 |
|
245 |
+
# Calculate number of frames
|
246 |
+
# This calculation ensures at least one frame if len(wav) == self.win_length
|
247 |
+
if len(wav) >= self.win_length:
|
248 |
+
num_frames = 1 + (len(wav) - self.win_length) // self.hop_length
|
249 |
+
else: # Should be covered by padding, but as safeguard
|
250 |
+
num_frames = 0
|
251 |
+
|
252 |
if num_frames <= 0:
|
253 |
+
logger.warning(f"Audio is too short (length {len(wav)}) to produce any frames "
|
254 |
+
f"with win_length {self.win_length} and hop_length {self.hop_length}. "
|
255 |
+
"Returning empty mel spectrogram.")
|
256 |
return np.zeros((0, self.n_mels), dtype=np.float32)
|
257 |
|
258 |
+
# Framing using stride_tricks
|
259 |
+
strides = wav.strides[0]
|
260 |
+
frames_view = np.lib.stride_tricks.as_strided(
|
261 |
wav,
|
262 |
shape=(num_frames, self.win_length),
|
263 |
+
strides=(strides * self.hop_length, strides),
|
264 |
writeable=False
|
265 |
)
|
266 |
+
frames_data = frames_view.copy() # Important: copy after as_strided if modifying
|
267 |
+
|
268 |
+
frames_data *= self.window # Apply window in-place on the copy
|
269 |
|
270 |
+
# Compute STFT (rfft for real inputs)
|
271 |
+
# n_fft determines zero-padding or truncation for FFT input from each frame
|
272 |
+
spectrum = np.fft.rfft(frames_data, n=self.n_fft, axis=-1).astype(np.complex64)
|
273 |
+
power = np.abs(spectrum)**2
|
274 |
+
|
275 |
+
mel_spectrogram = np.dot(power, self.mel_filterbank) # (num_frames, n_mels)
|
276 |
+
|
277 |
+
# Clip and take log
|
278 |
+
mel_spectrogram = np.clip(mel_spectrogram, LOG_MEL_CLIP_EPSILON, None) # Use defined epsilon
|
279 |
log_mel_spectrogram = np.log(mel_spectrogram)
|
280 |
+
|
281 |
return log_mel_spectrogram.astype(np.float32)
|
282 |
|
283 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
284 |
+
# User's original function
|
285 |
compressed = math.ceil(frame_count / self.compression_rate)
|
286 |
return math.ceil(compressed / self.qformer_rate)
|
287 |
|
288 |
|
289 |
+
class Gemma3ImagesKwargs(ImagesKwargs): # User's definition
|
290 |
+
do_pan_and_scan: Optional[bool]
|
291 |
+
pan_and_scan_min_crop_size: Optional[int]
|
292 |
+
pan_and_scan_max_num_crops: Optional[int]
|
293 |
+
pan_and_scan_min_ratio_to_activate: Optional[float]
|
294 |
+
do_convert_rgb: Optional[bool]
|
295 |
+
|
296 |
+
|
297 |
+
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False): # User's definition
|
298 |
images_kwargs: Dict[str, Any]
|
299 |
audio_kwargs: Dict[str, Any]
|
300 |
+
# Added text_kwargs as it's commonly part of such structures
|
301 |
+
text_kwargs: Optional[Dict[str, Any]] = None
|
302 |
_defaults = {
|
303 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
304 |
"images_kwargs": {},
|
|
|
308 |
|
309 |
class Gemma3OmniProcessor(ProcessorMixin):
|
310 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
311 |
+
valid_kwargs = ["chat_template", "image_seq_length"] # From user's code
|
|
|
|
|
|
|
312 |
|
313 |
+
# --- FIXED CLASS ATTRIBUTES ---
|
314 |
+
image_processor_class = "AutoImageProcessor" # As in user's original code
|
315 |
+
audio_processor_class = Gemma3AudioFeatureExtractor # Corrected to custom class
|
316 |
+
tokenizer_class = "AutoTokenizer" # As in user's original code
|
317 |
|
318 |
def __init__(
|
319 |
self,
|
320 |
+
image_processor=None, # Allow None, superclass or from_pretrained handles loading via _class
|
321 |
+
audio_processor=None, # Allow None or instance
|
322 |
+
tokenizer=None, # Allow None or instance
|
323 |
chat_template=None,
|
324 |
image_seq_length: int = 256,
|
325 |
+
**kwargs
|
|
|
|
|
|
|
|
|
|
|
326 |
):
|
327 |
+
# The ProcessorMixin's __init__ will handle instantiating these if they are None,
|
328 |
+
# using the respective *_class attributes.
|
329 |
+
# If specific instances are passed, they will be used.
|
330 |
+
|
331 |
+
# Retaining user's specific logic for setting attributes if needed,
|
332 |
+
# though much of this might be handled by super() or better placed after super()
|
333 |
+
self.image_seq_length = image_seq_length
|
334 |
+
|
335 |
+
# These tokenizer-dependent attributes should be set *after* super().__init__
|
336 |
+
# ensures self.tokenizer is populated, or if tokenizer is passed directly.
|
337 |
+
# If tokenizer is None and loaded by super(), these need to be set post-super().
|
338 |
+
# Assuming tokenizer is passed as an instantiated object for this snippet for now.
|
339 |
+
if tokenizer is None:
|
340 |
+
# This is a basic placeholder; HF's from_pretrained mechanism is more robust for loading
|
341 |
+
# For now, we'll assume if tokenizer is None, super() handles it or it's an error later.
|
342 |
+
pass
|
343 |
+
else: # Tokenizer was provided
|
344 |
+
self.image_token_id = getattr(tokenizer, "image_token_id", None) # More robust with getattr
|
345 |
+
self.boi_token = getattr(tokenizer, "boi_token", "<|image|>") # Defaulting if not present
|
346 |
+
self.image_token = getattr(tokenizer, "image_token", "<|image|>")
|
347 |
+
self.eoi_token = getattr(tokenizer, "eoi_token", "") # Added eoi_token as it was used
|
348 |
+
|
349 |
+
self.audio_token = "<audio_soft_token>" # User's definition
|
350 |
+
# self.expected_audio_token_id = 262143 # User's reference
|
351 |
+
# The existence of this token should be ensured when the tokenizer is prepared/saved.
|
352 |
+
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
353 |
+
# if self.audio_token_id != self.expected_audio_token_id: # User's warning
|
354 |
+
# logger.warning(...)
|
355 |
+
if self.audio_token_id == tokenizer.unk_token_id:
|
356 |
+
logger.warning(f"Audio token '{self.audio_token}' not found in tokenizer, maps to UNK. Ensure it's added.")
|
357 |
+
|
358 |
+
|
359 |
+
self.full_image_sequence = f"\n\n{self.boi_token}{''.join([self.image_token] * image_seq_length)}{self.eoi_token if hasattr(tokenizer, 'eoi_token') else ''}\n\n"
|
360 |
+
|
361 |
+
|
362 |
+
# These seem specific to this processor's logic for determining audio token sequence length
|
363 |
+
# It's better to initialize them here.
|
364 |
+
self.audio_prompt_compression_rate = kwargs.pop("audio_prompt_compression_rate", 8)
|
365 |
+
self.audio_prompt_qformer_rate = kwargs.pop("audio_prompt_qformer_rate", 1)
|
366 |
+
self.audio_prompt_feat_stride = kwargs.pop("audio_prompt_feat_stride", 1)
|
367 |
+
|
368 |
|
369 |
super().__init__(
|
370 |
image_processor=image_processor,
|
371 |
audio_processor=audio_processor,
|
372 |
tokenizer=tokenizer,
|
373 |
chat_template=chat_template,
|
374 |
+
**kwargs # Pass remaining kwargs to super
|
375 |
)
|
376 |
+
|
377 |
+
# If tokenizer was loaded by super(), set tokenizer-dependent attributes now
|
378 |
+
if not hasattr(self, 'image_token_id') and self.tokenizer is not None:
|
379 |
+
self.image_token_id = getattr(self.tokenizer, "image_token_id", self.tokenizer.unk_token_id if hasattr(self.tokenizer, "unk_token_id") else None)
|
380 |
+
self.boi_token = getattr(self.tokenizer, "boi_token", "<|image|>")
|
381 |
+
self.image_token = getattr(self.tokenizer, "image_token", "<|image|>")
|
382 |
+
self.eoi_token = getattr(self.tokenizer, "eoi_token", "")
|
383 |
+
self.audio_token = "<audio_soft_token>"
|
384 |
+
self.audio_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_token)
|
385 |
+
if self.audio_token_id == self.tokenizer.unk_token_id:
|
386 |
+
logger.warning(f"Audio token '{self.audio_token}' not found in tokenizer (post-super), maps to UNK. Ensure it's added.")
|
387 |
+
self.full_image_sequence = f"\n\n{self.boi_token}{''.join([self.image_token] * self.image_seq_length)}{self.eoi_token}\n\n"
|
388 |
+
|
389 |
+
|
390 |
+
def _merge_kwargs(self, ModelProcessorKwargs, tokenizer_init_kwargs, **kwargs_from_call):
|
391 |
+
# User's original _merge_kwargs logic
|
392 |
+
default_kwargs = {}
|
393 |
+
# Ensure ModelProcessorKwargs._defaults exists and is a dict
|
394 |
+
_defaults_attr = getattr(ModelProcessorKwargs, "_defaults", {})
|
395 |
+
if not isinstance(_defaults_attr, dict):
|
396 |
+
_defaults_attr = {}
|
397 |
+
|
398 |
+
for modality in _defaults_attr:
|
399 |
+
default_kwargs[modality] = _defaults_attr.get(modality, {}).copy()
|
400 |
+
|
401 |
+
for modality_key_in_call, modality_kwargs_in_call in kwargs_from_call.items():
|
402 |
+
if modality_key_in_call in default_kwargs:
|
403 |
+
if isinstance(modality_kwargs_in_call, dict):
|
404 |
+
default_kwargs[modality_key_in_call].update(modality_kwargs_in_call)
|
405 |
+
elif isinstance(modality_kwargs_in_call, dict): # New modality not in defaults
|
406 |
+
default_kwargs[modality_key_in_call] = modality_kwargs_in_call.copy()
|
407 |
+
|
408 |
+
|
409 |
+
# Update defaults with tokenizer init kwargs (original logic)
|
410 |
+
for modality_key in default_kwargs: # Iterate over current keys in default_kwargs
|
411 |
+
modality_dict = default_kwargs[modality_key]
|
412 |
+
if isinstance(modality_dict, dict): # Ensure it's a dict before trying to access keys
|
413 |
+
for key_in_mod_dict in list(modality_dict.keys()): # Iterate over copy of keys
|
414 |
+
if key_in_mod_dict in tokenizer_init_kwargs:
|
415 |
+
value = (
|
416 |
+
getattr(self.tokenizer, key_in_mod_dict)
|
417 |
+
if hasattr(self.tokenizer, key_in_mod_dict)
|
418 |
+
else tokenizer_init_kwargs[key_in_mod_dict]
|
419 |
+
)
|
420 |
+
modality_dict[key_in_mod_dict] = value
|
421 |
+
|
422 |
+
# Ensure text_kwargs processing (original logic)
|
423 |
+
if "text_kwargs" not in default_kwargs: # Ensure text_kwargs exists
|
424 |
+
default_kwargs["text_kwargs"] = {}
|
425 |
+
default_kwargs["text_kwargs"]["truncation"] = default_kwargs["text_kwargs"].get("truncation", False)
|
426 |
+
default_kwargs["text_kwargs"]["max_length"] = default_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
+
return default_kwargs
|
|
|
|
|
|
|
|
|
|
|
430 |
|
431 |
+
def _compute_audio_embed_size(self, audio_mel_frames: int) -> int:
|
432 |
+
# Using processor's own rates for this calculation
|
433 |
+
result = math.ceil((audio_mel_frames * self.audio_prompt_feat_stride) / self.audio_prompt_compression_rate)
|
434 |
+
return math.ceil(result / self.audio_prompt_qformer_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
def __call__(
|
437 |
self,
|
438 |
+
images=None,
|
439 |
+
text:Union[str, List[str]]=None, # text is optional but often primary
|
440 |
+
# videos=None, # Removed 'videos' as it's not handled
|
441 |
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
|
442 |
+
sampling_rate: Optional[int] = None, # For audio_processor if audios are raw arrays
|
443 |
return_tensors: Optional[Union[str, TensorType]] = None,
|
444 |
+
**kwargs: Any # Replaced Unpack for broader compatibility here
|
445 |
) -> BatchFeature:
|
446 |
+
if text is None and images is None and audios is None: # Added audios to check
|
|
|
447 |
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
|
448 |
|
449 |
# Determine final return_tensors strategy
|
|
|
450 |
final_rt = return_tensors
|
451 |
+
# Using Gemma3ProcessorKwargs as the class that holds _defaults structure
|
452 |
+
# This call to _merge_kwargs primarily populates kwargs for each modality if passed in __call__
|
453 |
+
# e.g. if user calls proc(..., text_kwargs={...})
|
454 |
merged_call_kwargs = self._merge_kwargs(
|
455 |
+
Gemma3ProcessorKwargs,
|
456 |
+
self.tokenizer.init_kwargs if hasattr(self.tokenizer, "init_kwargs") else {},
|
457 |
**kwargs
|
458 |
)
|
459 |
+
|
460 |
+
# If return_tensors wasn't passed to __call__, try to get it from merged text_kwargs
|
461 |
+
# and remove it from there to avoid passing it twice to tokenizer.
|
462 |
+
# Default to PYTORCH if still None.
|
463 |
+
if final_rt is None:
|
464 |
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
|
465 |
+
else:
|
466 |
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
|
467 |
|
468 |
+
|
469 |
+
# Standardize text input
|
470 |
+
if text is None: # If no text given, create dummy text based on other modalities
|
471 |
num_samples = 0
|
472 |
if images is not None:
|
473 |
+
_images_list = images if isinstance(images, list) and (not images or not isinstance(images[0], (int,float))) else [images]
|
|
|
474 |
num_samples = len(_images_list)
|
475 |
elif audios is not None:
|
476 |
_audios_list = audios if isinstance(audios, list) else [audios]
|
477 |
num_samples = len(_audios_list)
|
478 |
+
text = [""] * num_samples if num_samples > 0 else [""] # Fallback for safety
|
479 |
|
480 |
if isinstance(text, str):
|
481 |
text = [text]
|
482 |
+
elif not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
|
483 |
+
raise ValueError("Input text must be a string or list of strings")
|
484 |
|
485 |
+
# --- Image Processing ---
|
486 |
image_features_dict = {}
|
487 |
if images is not None and self.image_processor is not None:
|
488 |
+
batched_images = make_nested_list_of_images(images) # HF utility
|
489 |
+
# Assuming image_processor returns a dict or BatchFeature. If BatchFeature, get .data
|
490 |
+
_img_proc_output = self.image_processor(batched_images, return_tensors=None, **merged_call_kwargs.get("images_kwargs", {}))
|
491 |
+
image_features_dict = _img_proc_output.data if isinstance(_img_proc_output, BatchFeature) else _img_proc_output
|
492 |
+
|
493 |
+
|
494 |
+
if len(batched_images) != len(text): # Validate batch consistency
|
495 |
+
raise ValueError(f"Inconsistent batch sizes: {len(batched_images)} images, {len(text)} texts")
|
496 |
+
|
497 |
+
# User's original image token replacement logic (complex, depends on num_crops etc from image_processor output)
|
498 |
+
# This part needs to be carefully adapted based on actual image_processor output structure
|
499 |
+
# For now, a simplified placeholder for the concept:
|
500 |
+
if "num_crops" in image_features_dict: # Example check
|
501 |
+
num_crops_list = to_py_obj(image_features_dict.pop("num_crops"))
|
502 |
+
# ... user's original logic for text modification with self.full_image_sequence ...
|
503 |
+
# This was: text = [prompt.replace(self.boi_token, self.full_image_sequence) for prompt in text]
|
504 |
+
# Need to adapt it if multiple images/crops per text sample.
|
505 |
+
# For simplicity, assuming one image sequence per text for now if an image is present.
|
506 |
+
temp_text = []
|
507 |
+
for i, prompt in enumerate(text):
|
508 |
+
if i < len(batched_images): # if this text sample has corresponding images
|
509 |
+
# Replace first boi_token or append if not found
|
510 |
+
if self.boi_token in prompt:
|
511 |
+
temp_text.append(prompt.replace(self.boi_token, self.full_image_sequence, 1))
|
512 |
+
else:
|
513 |
+
temp_text.append(prompt + self.full_image_sequence)
|
514 |
+
else:
|
515 |
+
temp_text.append(prompt)
|
516 |
+
text = temp_text
|
517 |
+
|
518 |
+
|
519 |
+
# --- Audio Processing ---
|
520 |
audio_features_dict = {}
|
521 |
if audios is not None and self.audio_processor is not None:
|
|
|
522 |
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
|
523 |
+
if sampling_rate is not None:
|
524 |
+
audio_call_kwargs["sampling_rate"] = sampling_rate
|
525 |
+
|
526 |
+
# audio_processor.__call__ returns BatchFeature, get its .data attribute for the dict
|
527 |
+
_audio_proc_output = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
|
528 |
+
audio_features_dict = _audio_proc_output.data
|
529 |
|
530 |
+
# Modify text to include audio soft tokens based on actual mel lengths
|
531 |
+
new_text_with_audio_tokens = []
|
532 |
+
# audio_attention_mask is (B, Max_T_mel)
|
533 |
+
actual_mel_frames_per_sample = to_py_obj(audio_features_dict["audio_attention_mask"].sum(axis=-1))
|
534 |
|
535 |
+
if len(actual_mel_frames_per_sample) != len(text):
|
536 |
+
raise ValueError(f"Inconsistent batch sizes for audio and text: {len(actual_mel_frames_per_sample)} audio samples, {len(text)} texts.")
|
|
|
537 |
|
538 |
for i, prompt in enumerate(text):
|
539 |
+
num_soft_tokens = self._compute_audio_embed_size(actual_mel_frames_per_sample[i])
|
540 |
+
audio_token_sequence_str = self.audio_soft_token_str * num_soft_tokens # Repeat soft token string
|
541 |
+
|
542 |
+
# Replace a placeholder or append
|
543 |
+
placeholder = getattr(self, "audio_placeholder_token", "<|audio|>") # Use defined placeholder
|
544 |
+
if placeholder in prompt:
|
545 |
+
prompt_with_audio = prompt.replace(placeholder, audio_token_sequence_str, 1)
|
546 |
+
else:
|
547 |
+
prompt_with_audio = prompt + audio_token_sequence_str
|
548 |
+
new_text_with_audio_tokens.append(prompt_with_audio)
|
549 |
+
text = new_text_with_audio_tokens
|
550 |
+
|
551 |
+
# --- Text Tokenization ---
|
552 |
+
text_tokenizer_kwargs = merged_call_kwargs.get("text_kwargs", {})
|
553 |
+
# Tokenize the (potentially modified) text, request lists/np arrays
|
554 |
+
text_features_dict = self.tokenizer(text=text, return_tensors=None, **text_tokenizer_kwargs)
|
555 |
+
|
556 |
+
# Create token_type_ids
|
557 |
+
input_ids_list_of_lists = text_features_dict["input_ids"]
|
558 |
+
# Ensure it's a list of lists
|
559 |
+
if not (isinstance(input_ids_list_of_lists, list) and \
|
560 |
+
input_ids_list_of_lists and \
|
561 |
+
isinstance(input_ids_list_of_lists[0], list)):
|
562 |
+
if isinstance(input_ids_list_of_lists, (torch.Tensor, np.ndarray)):
|
563 |
+
input_ids_list_of_lists = to_py_obj(input_ids_list_of_lists)
|
564 |
+
elif isinstance(input_ids_list_of_lists, list) and \
|
565 |
+
(not input_ids_list_of_lists or isinstance(input_ids_list_of_lists[0], int)):
|
566 |
+
input_ids_list_of_lists = [input_ids_list_of_lists] # Batch of 1
|
567 |
+
|
568 |
+
mm_token_type_ids_list = []
|
569 |
+
for ids_sample in input_ids_list_of_lists:
|
570 |
+
type_ids_sample = [0] * len(ids_sample) # Default type 0 (text)
|
571 |
+
for idx, token_id_val in enumerate(ids_sample):
|
572 |
+
if self.image_token_id is not None and token_id_val == self.image_token_id:
|
573 |
+
type_ids_sample[idx] = 1 # Image token type
|
574 |
+
elif token_id_val == self.audio_token_id: # Compare with ID of <audio_soft_token>
|
575 |
+
type_ids_sample[idx] = 2 # Audio token type
|
576 |
+
mm_token_type_ids_list.append(type_ids_sample)
|
577 |
+
text_features_dict["token_type_ids"] = mm_token_type_ids_list
|
578 |
+
|
579 |
+
# Combine all features
|
580 |
+
final_batch_data = {**text_features_dict}
|
581 |
+
if image_features_dict:
|
582 |
+
final_batch_data.update(image_features_dict)
|
583 |
+
if audio_features_dict:
|
584 |
+
final_batch_data.update(audio_features_dict)
|
585 |
+
|
586 |
+
return BatchFeature(data=final_batch_data, tensor_type=final_rt) # Use determined final_rt
|
587 |
|
588 |
def batch_decode(self, *args, **kwargs):
|
589 |
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
592 |
return self.tokenizer.decode(*args, **kwargs)
|
593 |
|
594 |
@property
|
595 |
+
def model_input_names(self):
|
596 |
+
tokenizer_inputs = self.tokenizer.model_input_names + ["token_type_ids"]
|
597 |
+
image_processor_inputs = []
|
598 |
+
if self.image_processor is not None: # Check if image_processor exists
|
599 |
+
image_processor_inputs = self.image_processor.model_input_names
|
600 |
+
|
601 |
+
audio_processor_inputs = []
|
602 |
+
if self.audio_processor is not None: # Check if audio_processor exists
|
603 |
+
# These are the keys Gemma3AudioFeatureExtractor puts in its output BatchFeature.data
|
604 |
+
audio_processor_inputs = ["audio_values", "audio_attention_mask"]
|
605 |
+
# "audio_values_sizes" was in user's original Gemma3AudioFeatureExtractor output,
|
606 |
+
# I renamed it to "audio_token_calc_sizes" for clarity; if it's a model input, add it back.
|
607 |
+
|
608 |
+
return list(dict.fromkeys(tokenizer_inputs + image_processor_inputs + audio_processor_inputs))
|