Update processing_gemma3_omni.py
Browse files- processing_gemma3_omni.py +444 -214
processing_gemma3_omni.py
CHANGED
@@ -6,11 +6,11 @@ import numpy as np
|
|
6 |
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
-
from transformers.audio_utils import AudioInput
|
10 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
11 |
from transformers.feature_extraction_utils import BatchFeature
|
12 |
-
from transformers.image_utils import make_nested_list_of_images
|
13 |
-
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs
|
14 |
from transformers.utils import TensorType, to_py_obj, logging
|
15 |
|
16 |
# Constants
|
@@ -19,12 +19,13 @@ DEFAULT_N_FFT = 512
|
|
19 |
DEFAULT_WIN_LENGTH = 400
|
20 |
DEFAULT_HOP_LENGTH = 160
|
21 |
DEFAULT_N_MELS = 80
|
22 |
-
DEFAULT_COMPRESSION_RATE = 4
|
23 |
-
DEFAULT_QFORMER_RATE = 2
|
24 |
-
DEFAULT_FEAT_STRIDE = 4
|
25 |
-
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>"
|
26 |
-
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>"
|
27 |
-
DEFAULT_MAX_LENGTH = 16384
|
|
|
28 |
|
29 |
logger = logging.get_logger(__name__)
|
30 |
|
@@ -32,25 +33,48 @@ logger = logging.get_logger(__name__)
|
|
32 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
33 |
fmax: Optional[float] = None) -> np.ndarray:
|
34 |
"""Create Mel filterbank for audio processing."""
|
35 |
-
fmax = fmax or sampling_rate / 2
|
36 |
|
37 |
-
def hz_to_mel(f: float) -> float:
|
38 |
return 1127.0 * math.log(1 + f / 700.0)
|
39 |
|
|
|
|
|
|
|
40 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
41 |
-
freq_points = 700.0 * (np.exp(mel_points / 1127.0) - 1)
|
42 |
-
bins = np.floor((n_fft + 1) * freq_points / sampling_rate).astype(int)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
filterbank[m - 1, center:right] = (right - np.arange(center, right)) / (right - center)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return filterbank
|
51 |
|
52 |
|
53 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
|
|
|
54 |
def __init__(
|
55 |
self,
|
56 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
@@ -58,89 +82,191 @@ class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
|
58 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
59 |
sampling_rate: int = DEFAULT_SAMPLING_RATE,
|
60 |
n_fft: int = DEFAULT_N_FFT,
|
61 |
-
win_length: int =
|
62 |
-
hop_length: int =
|
63 |
n_mels: int = DEFAULT_N_MELS,
|
|
|
|
|
|
|
64 |
**kwargs
|
65 |
):
|
66 |
-
|
67 |
-
|
68 |
-
kwargs.pop("padding_value", None)
|
69 |
|
70 |
super().__init__(
|
71 |
-
feature_size=n_mels,
|
72 |
-
sampling_rate=sampling_rate,
|
73 |
-
padding_value=
|
74 |
**kwargs
|
75 |
)
|
76 |
|
77 |
self.compression_rate = compression_rate
|
78 |
self.qformer_rate = qformer_rate
|
79 |
self.feat_stride = feat_stride
|
80 |
-
self.sampling_rate
|
81 |
|
82 |
-
self.window = np.hamming(win_length).astype(np.float32)
|
83 |
-
self.mel_filterbank = create_mel_filterbank(sampling_rate, n_fft, n_mels).T
|
84 |
self.n_fft = n_fft
|
85 |
-
self.
|
86 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
def __call__(
|
89 |
self,
|
90 |
-
audios: List[AudioInput],
|
|
|
91 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
92 |
) -> BatchFeature:
|
93 |
-
features, sizes, frames = [], [], []
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
output_data = {
|
112 |
-
"audio_values":
|
113 |
-
"
|
114 |
}
|
115 |
-
if attention_mask is not None:
|
116 |
-
output_data["audio_attention_mask"] = attention_mask
|
117 |
|
|
|
|
|
|
|
|
|
|
|
118 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
119 |
|
120 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
121 |
-
wav
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if wav.ndim > 1:
|
123 |
wav = wav.mean(axis=0)
|
|
|
124 |
if source_sr != self.sampling_rate:
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def _compute_log_mel_spectrogram(self, wav: np.ndarray) -> np.ndarray:
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
wav,
|
133 |
-
shape=(
|
134 |
-
strides=(strides * self.hop_length, strides),
|
135 |
writeable=False
|
136 |
-
)
|
137 |
-
|
|
|
138 |
|
139 |
-
spectrum = np.fft.rfft(
|
140 |
power = np.abs(spectrum) ** 2
|
141 |
mel_spectrogram = np.dot(power, self.mel_filterbank)
|
142 |
-
mel_spectrogram = np.clip(mel_spectrogram,
|
143 |
-
|
|
|
|
|
144 |
|
145 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
146 |
compressed = math.ceil(frame_count / self.compression_rate)
|
@@ -156,8 +282,9 @@ class Gemma3ImagesKwargs(ImagesKwargs):
|
|
156 |
|
157 |
|
158 |
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
|
159 |
-
images_kwargs: Dict[str, Any]
|
160 |
-
audio_kwargs: Dict[str, Any]
|
|
|
161 |
_defaults = {
|
162 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
163 |
"images_kwargs": {},
|
@@ -168,38 +295,23 @@ class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
|
|
168 |
class Gemma3OmniProcessor(ProcessorMixin):
|
169 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
170 |
valid_kwargs = ["chat_template", "image_seq_length"]
|
|
|
171 |
image_processor_class = "AutoImageProcessor"
|
172 |
-
audio_processor_class = "AutoFeatureExtractor"
|
173 |
tokenizer_class = "AutoTokenizer"
|
174 |
|
175 |
def __init__(
|
176 |
self,
|
177 |
-
image_processor,
|
178 |
-
audio_processor,
|
179 |
-
tokenizer,
|
180 |
chat_template=None,
|
181 |
image_seq_length: int = 256,
|
182 |
**kwargs
|
183 |
):
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
self.image_token = tokenizer.image_token
|
188 |
-
self.audio_token = "<audio_soft_token>"
|
189 |
-
self.expected_audio_token_id = 262143
|
190 |
-
self.full_image_sequence = f"\n\n{tokenizer.boi_token}{''.join([tokenizer.image_token] * image_seq_length)}{tokenizer.eoi_token}\n\n"
|
191 |
-
|
192 |
-
self.compression_rate = 8
|
193 |
-
self.qformer_compression_rate = 1
|
194 |
-
self.feat_stride = 1
|
195 |
-
|
196 |
-
self.audio_token_id = tokenizer.convert_tokens_to_ids(self.audio_token)
|
197 |
-
if self.audio_token_id != self.expected_audio_token_id:
|
198 |
-
logger.warning(
|
199 |
-
f"Assigned ID {self.audio_token_id} for '{self.audio_token}' does not match expected ID {self.expected_audio_token_id}. "
|
200 |
-
"Using assigned ID. Model embedding layer may need resizing."
|
201 |
-
)
|
202 |
-
|
203 |
super().__init__(
|
204 |
image_processor=image_processor,
|
205 |
audio_processor=audio_processor,
|
@@ -208,136 +320,243 @@ class Gemma3OmniProcessor(ProcessorMixin):
|
|
208 |
**kwargs
|
209 |
)
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
def __call__(
|
245 |
self,
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
251 |
) -> BatchFeature:
|
252 |
-
if text is None and images is None:
|
253 |
-
raise ValueError("Provide at least one of `text` or `
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
258 |
**kwargs
|
259 |
)
|
260 |
|
261 |
-
if
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
if images is not None:
|
|
|
269 |
batched_images = make_nested_list_of_images(images)
|
270 |
-
|
271 |
-
|
272 |
-
if
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
f"
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
def batch_decode(self, *args, **kwargs):
|
343 |
return self.tokenizer.batch_decode(*args, **kwargs)
|
@@ -346,8 +565,19 @@ class Gemma3OmniProcessor(ProcessorMixin):
|
|
346 |
return self.tokenizer.decode(*args, **kwargs)
|
347 |
|
348 |
@property
|
349 |
-
def model_input_names(self):
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import scipy.signal
|
7 |
import torch
|
8 |
from torch.nn.utils.rnn import pad_sequence
|
9 |
+
from transformers.audio_utils import AudioInput # type: ignore
|
10 |
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
11 |
from transformers.feature_extraction_utils import BatchFeature
|
12 |
+
from transformers.image_utils import make_nested_list_of_images # If image processing is used
|
13 |
+
from transformers.processing_utils import ProcessorMixin, ProcessingKwargs, ImagesKwargs
|
14 |
from transformers.utils import TensorType, to_py_obj, logging
|
15 |
|
16 |
# Constants
|
|
|
19 |
DEFAULT_WIN_LENGTH = 400
|
20 |
DEFAULT_HOP_LENGTH = 160
|
21 |
DEFAULT_N_MELS = 80
|
22 |
+
DEFAULT_COMPRESSION_RATE = 4 # For _calculate_embed_length
|
23 |
+
DEFAULT_QFORMER_RATE = 2 # For _calculate_embed_length
|
24 |
+
DEFAULT_FEAT_STRIDE = 4 # For _calculate_embed_length / 'frames'
|
25 |
+
IMAGE_TOKEN_PATTERN = r"<\|image_\d+\|>" # Not used in this file directly
|
26 |
+
AUDIO_TOKEN_PATTERN = r"<\|audio_\d+\|>" # Not used in this file directly
|
27 |
+
DEFAULT_MAX_LENGTH = 16384 # For tokenizer default
|
28 |
+
LOG_MEL_CLIP_EPSILON = 1e-5
|
29 |
|
30 |
logger = logging.get_logger(__name__)
|
31 |
|
|
|
33 |
def create_mel_filterbank(sampling_rate: int, n_fft: int, n_mels: int, fmin: float = 0.0,
|
34 |
fmax: Optional[float] = None) -> np.ndarray:
|
35 |
"""Create Mel filterbank for audio processing."""
|
36 |
+
fmax = fmax or sampling_rate / 2.0
|
37 |
|
38 |
+
def hz_to_mel(f: float) -> float: # User's formula
|
39 |
return 1127.0 * math.log(1 + f / 700.0)
|
40 |
|
41 |
+
if fmin >= fmax:
|
42 |
+
raise ValueError(f"fmin ({fmin}) must be smaller than fmax ({fmax}).")
|
43 |
+
|
44 |
mel_points = np.linspace(hz_to_mel(fmin), hz_to_mel(fmax), n_mels + 2)
|
45 |
+
freq_points = 700.0 * (np.exp(mel_points / 1127.0) - 1) # Inverse of user's hz_to_mel
|
|
|
46 |
|
47 |
+
freq_points = np.clip(freq_points, 0, sampling_rate / 2.0)
|
48 |
+
bins = np.floor((n_fft + 1) * freq_points / sampling_rate).astype(
|
49 |
+
int) # (n_fft+1) or n_fft/2 ? Librosa uses n_fft//2 * hz / sr_nyquist
|
50 |
+
bins = np.clip(bins, 0, n_fft // 2) # Max index for rfft output is n_fft//2
|
|
|
51 |
|
52 |
+
filterbank = np.zeros((n_mels, n_fft // 2 + 1), dtype=np.float32)
|
53 |
+
for m_idx in range(n_mels):
|
54 |
+
left, center, right = bins[m_idx], bins[m_idx + 1], bins[m_idx + 2]
|
55 |
+
|
56 |
+
if center > left: # Rising slope
|
57 |
+
filterbank[m_idx, left:center + 1] = (np.arange(left, center + 1) - left) / (center - left)
|
58 |
+
if right > center: # Falling slope
|
59 |
+
# Need to ensure the peak is 1 if center was part of rising slope
|
60 |
+
# If left==center, this part creates the full triangle (rising is skipped)
|
61 |
+
filterbank[m_idx, center:right + 1] = (right - np.arange(center, right + 1)) / (right - center)
|
62 |
+
|
63 |
+
# Ensure the peak at 'center' is 1.0 if it's a valid point.
|
64 |
+
# This handles cases where left=center or center=right if the slopes don't perfectly set it.
|
65 |
+
if left <= center <= right:
|
66 |
+
if filterbank.shape[1] > center: # Check bounds for center index
|
67 |
+
if (center > left and filterbank[m_idx, center] < 1.0) or \
|
68 |
+
(center < right and filterbank[m_idx, center] < 1.0) or \
|
69 |
+
(left == center and center < right) or \
|
70 |
+
(right == center and left < center):
|
71 |
+
filterbank[m_idx, center] = 1.0
|
72 |
return filterbank
|
73 |
|
74 |
|
75 |
class Gemma3AudioFeatureExtractor(SequenceFeatureExtractor):
|
76 |
+
model_input_names = ["audio_values", "audio_attention_mask"]
|
77 |
+
|
78 |
def __init__(
|
79 |
self,
|
80 |
compression_rate: int = DEFAULT_COMPRESSION_RATE,
|
|
|
82 |
feat_stride: int = DEFAULT_FEAT_STRIDE,
|
83 |
sampling_rate: int = DEFAULT_SAMPLING_RATE,
|
84 |
n_fft: int = DEFAULT_N_FFT,
|
85 |
+
win_length: Optional[int] = None,
|
86 |
+
hop_length: Optional[int] = None,
|
87 |
n_mels: int = DEFAULT_N_MELS,
|
88 |
+
f_min: float = 0.0,
|
89 |
+
f_max: Optional[float] = None,
|
90 |
+
padding_value: float = 0.0,
|
91 |
**kwargs
|
92 |
):
|
93 |
+
_win_length = win_length if win_length is not None else n_fft
|
94 |
+
_hop_length = hop_length if hop_length is not None else _win_length // 4
|
|
|
95 |
|
96 |
super().__init__(
|
97 |
+
feature_size=n_mels, # This is num_mel_bins
|
98 |
+
sampling_rate=sampling_rate, # This is the target sampling rate for featurization
|
99 |
+
padding_value=padding_value,
|
100 |
**kwargs
|
101 |
)
|
102 |
|
103 |
self.compression_rate = compression_rate
|
104 |
self.qformer_rate = qformer_rate
|
105 |
self.feat_stride = feat_stride
|
106 |
+
# self.sampling_rate is set by super() to the target rate
|
107 |
|
|
|
|
|
108 |
self.n_fft = n_fft
|
109 |
+
self.win_length = _win_length
|
110 |
+
self.hop_length = _hop_length
|
111 |
+
self.n_mels = n_mels
|
112 |
+
self.f_min = f_min
|
113 |
+
self.f_max = f_max if f_max is not None else self.sampling_rate / 2.0
|
114 |
+
|
115 |
+
if self.win_length > self.n_fft:
|
116 |
+
logger.warning(
|
117 |
+
f"win_length ({self.win_length}) is greater than n_fft ({self.n_fft}). "
|
118 |
+
"Window will be applied, then data zero-padded/truncated to n_fft by np.fft.rfft."
|
119 |
+
)
|
120 |
+
self.window = np.hamming(self.win_length).astype(np.float32)
|
121 |
+
self.mel_filterbank = create_mel_filterbank(
|
122 |
+
self.sampling_rate, self.n_fft, self.n_mels, fmin=self.f_min, fmax=self.f_max
|
123 |
+
).T
|
124 |
|
125 |
def __call__(
|
126 |
self,
|
127 |
+
audios: Union[AudioInput, List[AudioInput]],
|
128 |
+
sampling_rate: Optional[int] = None, # SR of input raw audio arrays
|
129 |
return_tensors: Union[TensorType, str, None] = TensorType.PYTORCH
|
130 |
) -> BatchFeature:
|
|
|
131 |
|
132 |
+
if not isinstance(audios, list):
|
133 |
+
audios = [audios]
|
134 |
+
|
135 |
+
processed_mels: List[torch.Tensor] = []
|
136 |
+
actual_mel_lengths: List[int] = []
|
137 |
+
|
138 |
+
# These lists are from your original code; their values might be used by Gemma3OmniProcessor later.
|
139 |
+
sizes_for_downstream_calc: List[torch.Tensor] = []
|
140 |
+
frames_scaled_for_downstream_calc: List[int] = []
|
141 |
+
|
142 |
+
for audio_item in audios:
|
143 |
+
current_wav_array: np.ndarray
|
144 |
+
source_sr: int # Original sampling rate of the current_wav_array
|
145 |
+
|
146 |
+
if isinstance(audio_item, tuple) and len(audio_item) == 2 and isinstance(audio_item[1], int):
|
147 |
+
current_wav_array, source_sr = audio_item
|
148 |
+
current_wav_array = np.asarray(current_wav_array, dtype=np.float32)
|
149 |
+
elif isinstance(audio_item, (np.ndarray, list)): # Raw waveform as array/list
|
150 |
+
current_wav_array = np.asarray(audio_item, dtype=np.float32)
|
151 |
+
if sampling_rate is None:
|
152 |
+
raise ValueError(
|
153 |
+
"sampling_rate argument must be provided to __call__ if 'audios' items "
|
154 |
+
"are raw numpy arrays or lists (without embedded sampling rate info)."
|
155 |
+
)
|
156 |
+
source_sr = sampling_rate
|
157 |
+
else:
|
158 |
+
# If you expect to load from paths/bytes, you'd use transformers.audio_utils.load_audio here
|
159 |
+
raise TypeError(
|
160 |
+
f"Unsupported audio_item type: {type(audio_item)}. Expected np.ndarray, list of floats, "
|
161 |
+
"or Tuple[np.ndarray, int (sampling_rate)]."
|
162 |
+
)
|
163 |
+
|
164 |
+
logger.debug(
|
165 |
+
f"Gemma3AudioFeatureExtractor: Processing audio item with original shape {current_wav_array.shape}, source_sr {source_sr}")
|
166 |
+
|
167 |
+
# 1. Preprocess: convert to mono, resample to self.sampling_rate, normalize
|
168 |
+
processed_wav_for_mel = self._preprocess_audio(current_wav_array, source_sr)
|
169 |
+
|
170 |
+
# 2. Compute Log-Mel Spectrogram: results in (NumFrames, self.n_mels)
|
171 |
+
mel_spectrogram_np = self._compute_log_mel_spectrogram(processed_wav_for_mel)
|
172 |
+
logger.debug(f"Gemma3AudioFeatureExtractor: Computed mel_spectrogram shape: {mel_spectrogram_np.shape}")
|
173 |
+
|
174 |
+
if not (mel_spectrogram_np.ndim == 2 and mel_spectrogram_np.shape[1] == self.n_mels):
|
175 |
+
# This check is important if _compute_log_mel_spectrogram could return variable shapes
|
176 |
+
logger.error(
|
177 |
+
f"Mel spectrogram computation resulted in unexpected shape {mel_spectrogram_np.shape}. Expected (NumFrames, {self.n_mels})")
|
178 |
+
# Fallback to a zero-feature tensor of correct feature dimension but zero time, or handle error
|
179 |
+
# This indicates a problem in _compute_log_mel_spectrogram or very unusual input
|
180 |
+
# For now, let it proceed, but this would be an issue.
|
181 |
+
# If num_frames was 0, shape would be (0, n_mels), which is valid.
|
182 |
|
183 |
+
feature_tensor = torch.from_numpy(mel_spectrogram_np) # Already float32
|
184 |
+
processed_mels.append(feature_tensor)
|
185 |
+
actual_mel_lengths.append(feature_tensor.shape[0]) # Number of time frames
|
186 |
|
187 |
+
# Original logic for 'sizes' and 'frames' (kept for compatibility with your processor)
|
188 |
+
sizes_for_downstream_calc.append(torch.tensor(self._calculate_embed_length(feature_tensor.shape[0])))
|
189 |
+
frames_scaled_for_downstream_calc.append(feature_tensor.shape[0] * self.feat_stride)
|
190 |
+
|
191 |
+
# Pad the list of 2D Mel spectrograms to form a 3D batch
|
192 |
+
# Output shape: (Batch, MaxNumFrames, NumMels)
|
193 |
+
audio_values_batched = pad_sequence(processed_mels, batch_first=True, padding_value=self.padding_value)
|
194 |
+
|
195 |
+
# Create attention mask for the padded batch
|
196 |
+
max_t_mel_in_batch = audio_values_batched.shape[1]
|
197 |
+
|
198 |
+
attention_mask_batched = torch.zeros(len(audios), max_t_mel_in_batch, dtype=torch.bool)
|
199 |
+
for i, length in enumerate(actual_mel_lengths):
|
200 |
+
attention_mask_batched[i, :length] = True
|
201 |
|
202 |
output_data = {
|
203 |
+
"audio_values": audio_values_batched, # Expected by model as (B, T, F)
|
204 |
+
"audio_attention_mask": attention_mask_batched # Mask for "audio_values"
|
205 |
}
|
|
|
|
|
206 |
|
207 |
+
if sizes_for_downstream_calc: # If these are used by the OmniProcessor
|
208 |
+
output_data["audio_values_sizes"] = torch.stack(sizes_for_downstream_calc)
|
209 |
+
|
210 |
+
logger.info(
|
211 |
+
f"Gemma3AudioFeatureExtractor: Final 'audio_values' batch shape: {output_data['audio_values'].shape}")
|
212 |
return BatchFeature(data=output_data, tensor_type=return_tensors)
|
213 |
|
214 |
def _preprocess_audio(self, wav: np.ndarray, source_sr: int) -> np.ndarray:
|
215 |
+
if wav.dtype not in [np.float32, np.float64]:
|
216 |
+
if np.issubdtype(wav.dtype, np.integer):
|
217 |
+
max_val = np.iinfo(wav.dtype).max if wav.size > 0 else 1.0
|
218 |
+
wav = wav.astype(np.float32) / max_val
|
219 |
+
else:
|
220 |
+
wav = wav.astype(np.float32)
|
221 |
+
elif wav.dtype == np.float64:
|
222 |
+
wav = wav.astype(np.float32)
|
223 |
+
|
224 |
if wav.ndim > 1:
|
225 |
wav = wav.mean(axis=0)
|
226 |
+
|
227 |
if source_sr != self.sampling_rate:
|
228 |
+
# logger.info(f"Resampling audio from {source_sr} Hz to {self.sampling_rate} Hz.")
|
229 |
+
common_divisor = math.gcd(self.sampling_rate, source_sr)
|
230 |
+
up_factor = self.sampling_rate // common_divisor
|
231 |
+
down_factor = source_sr // common_divisor
|
232 |
+
if up_factor != down_factor:
|
233 |
+
wav = scipy.signal.resample_poly(wav, up=up_factor, down=down_factor)
|
234 |
+
|
235 |
+
max_abs_val = np.abs(wav).max()
|
236 |
+
if max_abs_val > 1e-7: # Avoid division by zero/small numbers for silent/near-silent audio
|
237 |
+
wav = wav / max_abs_val
|
238 |
+
return wav
|
239 |
|
240 |
def _compute_log_mel_spectrogram(self, wav: np.ndarray) -> np.ndarray:
|
241 |
+
if len(wav) < self.win_length:
|
242 |
+
padding = self.win_length - len(wav)
|
243 |
+
wav = np.pad(wav, (0, padding), mode='constant', constant_values=0.0)
|
244 |
+
|
245 |
+
if len(wav) >= self.win_length:
|
246 |
+
num_frames = 1 + (len(wav) - self.win_length) // self.hop_length
|
247 |
+
else:
|
248 |
+
num_frames = 0 # Should be caught by the padding above, but defensive.
|
249 |
+
|
250 |
+
if num_frames <= 0:
|
251 |
+
# logger.warning(...)
|
252 |
+
return np.zeros((0, self.n_mels), dtype=np.float32) # Return shape (0, N_Mels)
|
253 |
+
|
254 |
+
frames_view = np.lib.stride_tricks.as_strided(
|
255 |
wav,
|
256 |
+
shape=(num_frames, self.win_length),
|
257 |
+
strides=(wav.strides[0] * self.hop_length, wav.strides[0]),
|
258 |
writeable=False
|
259 |
+
)
|
260 |
+
frames_data = frames_view.copy() # Ensure it's a copy before in-place modification
|
261 |
+
frames_data *= self.window
|
262 |
|
263 |
+
spectrum = np.fft.rfft(frames_data, n=self.n_fft, axis=-1).astype(np.complex64)
|
264 |
power = np.abs(spectrum) ** 2
|
265 |
mel_spectrogram = np.dot(power, self.mel_filterbank)
|
266 |
+
mel_spectrogram = np.clip(mel_spectrogram, LOG_MEL_CLIP_EPSILON, None)
|
267 |
+
log_mel_spectrogram = np.log(mel_spectrogram)
|
268 |
+
|
269 |
+
return log_mel_spectrogram.astype(np.float32)
|
270 |
|
271 |
def _calculate_embed_length(self, frame_count: int) -> int:
|
272 |
compressed = math.ceil(frame_count / self.compression_rate)
|
|
|
282 |
|
283 |
|
284 |
class Gemma3ProcessorKwargs(ProcessingKwargs, total=False):
|
285 |
+
images_kwargs: Optional[Dict[str, Any]] = None
|
286 |
+
audio_kwargs: Optional[Dict[str, Any]] = None
|
287 |
+
text_kwargs: Optional[Dict[str, Any]] = None
|
288 |
_defaults = {
|
289 |
"text_kwargs": {"padding": False, "truncation": False, "max_length": DEFAULT_MAX_LENGTH},
|
290 |
"images_kwargs": {},
|
|
|
295 |
class Gemma3OmniProcessor(ProcessorMixin):
|
296 |
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
297 |
valid_kwargs = ["chat_template", "image_seq_length"]
|
298 |
+
|
299 |
image_processor_class = "AutoImageProcessor"
|
300 |
+
audio_processor_class = "AutoFeatureExtractor" # CRITICAL: Must be string name of your custom class
|
301 |
tokenizer_class = "AutoTokenizer"
|
302 |
|
303 |
def __init__(
|
304 |
self,
|
305 |
+
image_processor=None,
|
306 |
+
audio_processor=None,
|
307 |
+
tokenizer=None,
|
308 |
chat_template=None,
|
309 |
image_seq_length: int = 256,
|
310 |
**kwargs
|
311 |
):
|
312 |
+
# ProcessorMixin.__init__ handles instantiation of audio_processor, image_processor, tokenizer
|
313 |
+
# if they are None when passed to it, using the *_class attributes defined above.
|
314 |
+
# If actual instances are passed (e.g., from from_pretrained), they will be used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
super().__init__(
|
316 |
image_processor=image_processor,
|
317 |
audio_processor=audio_processor,
|
|
|
320 |
**kwargs
|
321 |
)
|
322 |
|
323 |
+
# These attributes depend on self.tokenizer being properly initialized by super()
|
324 |
+
self.image_seq_length = image_seq_length
|
325 |
+
if self.tokenizer is not None:
|
326 |
+
# Use getattr for robustness, providing defaults if attributes are missing
|
327 |
+
self.image_token_id = getattr(self.tokenizer, "image_token_id",
|
328 |
+
self.tokenizer.unk_token_id if hasattr(self.tokenizer,
|
329 |
+
"unk_token_id") else None)
|
330 |
+
self.boi_token = getattr(self.tokenizer, "boi_token", "<image>") # More common default
|
331 |
+
self.image_token = getattr(self.tokenizer, "image_token", "<image>")
|
332 |
+
self.eoi_token = getattr(self.tokenizer, "eoi_token", "") # Default to empty if not present
|
333 |
+
|
334 |
+
# User's original attributes for audio tokens
|
335 |
+
self.audio_token_str_from_user_code = "<audio_soft_token>"
|
336 |
+
# self.expected_audio_token_id = 262143 # User's reference, keep commented for minimal change
|
337 |
+
|
338 |
+
self.audio_token_id = self.tokenizer.convert_tokens_to_ids(self.audio_token_str_from_user_code)
|
339 |
+
if hasattr(self.tokenizer, "unk_token_id") and self.audio_token_id == self.tokenizer.unk_token_id:
|
340 |
+
logger.warning(
|
341 |
+
f"The audio token string '{self.audio_token_str_from_user_code}' maps to the UNK token. "
|
342 |
+
"Please ensure it is added to the tokenizer's vocabulary as a special token."
|
343 |
+
)
|
344 |
+
self.full_image_sequence = f"\n\n{self.boi_token}{''.join([self.image_token] * image_seq_length)}{self.eoi_token}\n\n"
|
345 |
+
else:
|
346 |
+
# This state (tokenizer is None after super init) should ideally not occur if from_pretrained works.
|
347 |
+
logger.error(
|
348 |
+
"Gemma3OmniProcessor initialized, but self.tokenizer is None. Token-dependent attributes will use placeholders or defaults.")
|
349 |
+
self.image_token_id = None
|
350 |
+
self.boi_token = "<image>"
|
351 |
+
self.image_token = "<image>"
|
352 |
+
self.eoi_token = ""
|
353 |
+
self.audio_token_str_from_user_code = "<audio_soft_token>"
|
354 |
+
self.audio_token_id = -1 # Placeholder
|
355 |
+
self.full_image_sequence = ""
|
356 |
+
|
357 |
+
# These are parameters for this processor's logic for number of audio tokens in prompt
|
358 |
+
self.prompt_audio_compression_rate = kwargs.pop("audio_prompt_compression_rate", 8)
|
359 |
+
self.prompt_audio_qformer_rate = kwargs.pop("audio_prompt_qformer_rate", 1)
|
360 |
+
self.prompt_audio_feat_stride = kwargs.pop("audio_prompt_feat_stride", 1)
|
361 |
+
self.audio_placeholder_token = kwargs.pop("audio_placeholder_token", "<|audio_placeholder|>")
|
362 |
+
|
363 |
+
def _merge_kwargs(self, KwargsClassWithDefaults, tokenizer_init_kwargs, **kwargs_from_call):
|
364 |
+
# This method merges default kwargs, tokenizer init kwargs, and call-specific kwargs
|
365 |
+
final_kwargs = {}
|
366 |
+
_defaults = getattr(KwargsClassWithDefaults, "_defaults", {})
|
367 |
+
if not isinstance(_defaults, dict): _defaults = {}
|
368 |
+
|
369 |
+
for modality_key, default_modality_kwargs in _defaults.items():
|
370 |
+
final_kwargs[modality_key] = default_modality_kwargs.copy()
|
371 |
+
|
372 |
+
for modality_key_in_call, modality_kwargs_in_call in kwargs_from_call.items():
|
373 |
+
if modality_key_in_call in final_kwargs: # e.g. "text_kwargs"
|
374 |
+
if isinstance(modality_kwargs_in_call, dict):
|
375 |
+
final_kwargs[modality_key_in_call].update(modality_kwargs_in_call)
|
376 |
+
elif isinstance(modality_kwargs_in_call, dict): # New modality not in _defaults (e.g. "video_kwargs")
|
377 |
+
final_kwargs[modality_key_in_call] = modality_kwargs_in_call.copy()
|
378 |
+
|
379 |
+
if self.tokenizer: # Ensure tokenizer is available for its init_kwargs
|
380 |
+
for modality_key in final_kwargs:
|
381 |
+
modality_dict = final_kwargs[modality_key]
|
382 |
+
if isinstance(modality_dict, dict):
|
383 |
+
for key_in_mod_dict in list(modality_dict.keys()):
|
384 |
+
if key_in_mod_dict in tokenizer_init_kwargs: # tokenizer_init_kwargs from self.tokenizer.init_kwargs
|
385 |
+
value = (
|
386 |
+
getattr(self.tokenizer, key_in_mod_dict) # Check actual tokenizer attribute first
|
387 |
+
if hasattr(self.tokenizer, key_in_mod_dict)
|
388 |
+
else tokenizer_init_kwargs[key_in_mod_dict]
|
389 |
+
)
|
390 |
+
modality_dict[key_in_mod_dict] = value
|
391 |
+
|
392 |
+
if "text_kwargs" not in final_kwargs:
|
393 |
+
final_kwargs["text_kwargs"] = {}
|
394 |
+
# Ensure these text_kwargs have defaults if not set otherwise
|
395 |
+
final_kwargs["text_kwargs"]["truncation"] = final_kwargs["text_kwargs"].get("truncation", False)
|
396 |
+
final_kwargs["text_kwargs"]["max_length"] = final_kwargs["text_kwargs"].get("max_length", DEFAULT_MAX_LENGTH)
|
397 |
+
|
398 |
+
return final_kwargs
|
399 |
+
|
400 |
+
def _compute_audio_embed_size(self, audio_mel_frames: int) -> int:
|
401 |
+
scaled_frames = audio_mel_frames * self.prompt_audio_feat_stride
|
402 |
+
result = math.ceil(scaled_frames / self.prompt_audio_compression_rate)
|
403 |
+
return math.ceil(result / self.prompt_audio_qformer_rate)
|
404 |
|
405 |
def __call__(
|
406 |
self,
|
407 |
+
text: Union[str, List[str]] = None,
|
408 |
+
images: Optional[Any] = None,
|
409 |
+
audios: Optional[Union[AudioInput, List[AudioInput]]] = None,
|
410 |
+
sampling_rate: Optional[int] = None,
|
411 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
412 |
+
**kwargs: Any
|
413 |
) -> BatchFeature:
|
414 |
+
if text is None and images is None and audios is None:
|
415 |
+
raise ValueError("Provide at least one of `text`, `images`, or `audios`.")
|
416 |
+
|
417 |
+
# Determine final return_tensors strategy (explicit __call__ arg > from text_kwargs > default)
|
418 |
+
final_rt = return_tensors
|
419 |
+
# _merge_kwargs uses Gemma3ProcessorKwargs to structure the **kwargs from __call__
|
420 |
+
merged_call_kwargs = self._merge_kwargs(
|
421 |
+
Gemma3ProcessorKwargs, # Class defining _defaults structure
|
422 |
+
self.tokenizer.init_kwargs if hasattr(self.tokenizer, 'init_kwargs') else {},
|
423 |
**kwargs
|
424 |
)
|
425 |
|
426 |
+
if final_rt is None: # If not passed directly to __call__
|
427 |
+
# Get from merged_call_kwargs (which would have picked it up from kwargs['text_kwargs'])
|
428 |
+
# and remove it to prevent passing twice to tokenizer
|
429 |
+
final_rt = merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", TensorType.PYTORCH)
|
430 |
+
else: # If passed directly, ensure it's removed from text_kwargs to avoid conflict
|
431 |
+
merged_call_kwargs.get("text_kwargs", {}).pop("return_tensors", None)
|
432 |
+
|
433 |
+
if text is None: # Default text if only other modalities are provided
|
434 |
+
num_samples = 0
|
435 |
+
if images is not None:
|
436 |
+
_images_list = images if isinstance(images, list) and (
|
437 |
+
not images or not isinstance(images[0], (int, float))) else [images]
|
438 |
+
num_samples = len(_images_list)
|
439 |
+
elif audios is not None:
|
440 |
+
_audios_list = audios if isinstance(audios, list) else [audios]
|
441 |
+
num_samples = len(_audios_list)
|
442 |
+
text = [""] * num_samples if num_samples > 0 else [""] # Create empty strings or one if no samples
|
443 |
+
|
444 |
+
if isinstance(text, str): text = [text]
|
445 |
+
if not (isinstance(text, list) and all(isinstance(t, str) for t in text)):
|
446 |
+
raise ValueError("Input `text` must be a string or a list of strings.")
|
447 |
+
|
448 |
+
# --- Image Processing (User's structure) ---
|
449 |
+
image_features_dict = {}
|
450 |
if images is not None:
|
451 |
+
if self.image_processor is None: raise ValueError("Images provided but self.image_processor is None.")
|
452 |
batched_images = make_nested_list_of_images(images)
|
453 |
+
_img_proc_output = self.image_processor(batched_images, return_tensors=None,
|
454 |
+
**merged_call_kwargs.get("images_kwargs", {}))
|
455 |
+
image_features_dict = _img_proc_output.data if isinstance(_img_proc_output,
|
456 |
+
BatchFeature) else _img_proc_output
|
457 |
+
|
458 |
+
# Adjust text based on images (user's original logic)
|
459 |
+
if len(text) == 0 and len(batched_images) > 0: text = [" ".join([self.boi_token] * len(img_batch)) for
|
460 |
+
img_batch in batched_images]
|
461 |
+
if len(batched_images) != len(text): raise ValueError(
|
462 |
+
f"Inconsistent batch: {len(batched_images)} images, {len(text)} texts")
|
463 |
+
|
464 |
+
num_crops_popped = image_features_dict.pop("num_crops", None)
|
465 |
+
if num_crops_popped is not None:
|
466 |
+
num_crops_all = to_py_obj(num_crops_popped)
|
467 |
+
temp_text_img, current_crop_idx_offset = [], 0
|
468 |
+
for batch_idx, (prompt, current_imgs_in_batch) in enumerate(zip(text, batched_images)):
|
469 |
+
crops_for_this_batch_sample = []
|
470 |
+
if num_crops_all:
|
471 |
+
for _ in current_imgs_in_batch:
|
472 |
+
if current_crop_idx_offset < len(num_crops_all):
|
473 |
+
crops_for_this_batch_sample.append(
|
474 |
+
num_crops_all[current_crop_idx_offset]); current_crop_idx_offset += 1
|
475 |
+
else:
|
476 |
+
crops_for_this_batch_sample.append(0)
|
477 |
+
image_indexes = [m.start() for m in re.finditer(re.escape(self.boi_token), prompt)]
|
478 |
+
processed_prompt = prompt
|
479 |
+
iter_count = min(len(crops_for_this_batch_sample), len(image_indexes))
|
480 |
+
for i_crop_idx in range(iter_count - 1, -1, -1):
|
481 |
+
num_additional_crops = crops_for_this_batch_sample[i_crop_idx]
|
482 |
+
original_token_idx = image_indexes[i_crop_idx]
|
483 |
+
if num_additional_crops > 0:
|
484 |
+
replacement_text = (
|
485 |
+
f"Here is the original image {self.boi_token} and here are some crops to help you see better " + " ".join(
|
486 |
+
[self.boi_token] * num_additional_crops))
|
487 |
+
processed_prompt = processed_prompt[
|
488 |
+
:original_token_idx] + replacement_text + processed_prompt[
|
489 |
+
original_token_idx + len(
|
490 |
+
self.boi_token):]
|
491 |
+
temp_text_img.append(processed_prompt)
|
492 |
+
text = temp_text_img
|
493 |
+
text = [p.replace(self.boi_token, self.full_image_sequence) for p in text]
|
494 |
+
|
495 |
+
# --- Audio Processing ---
|
496 |
+
audio_features_dict = {}
|
497 |
+
if audios is not None:
|
498 |
+
if self.audio_processor is None: raise ValueError("Audios provided but self.audio_processor is None.")
|
499 |
+
audio_call_kwargs = merged_call_kwargs.get("audio_kwargs", {})
|
500 |
+
if sampling_rate is not None: audio_call_kwargs[
|
501 |
+
"sampling_rate"] = sampling_rate # Pass SR to feature extractor
|
502 |
+
|
503 |
+
_audio_proc_output = self.audio_processor(audios=audios, return_tensors=None, **audio_call_kwargs)
|
504 |
+
audio_features_dict = _audio_proc_output.data
|
505 |
+
logger.info(
|
506 |
+
f"Gemma3OmniProcessor: 'audio_values' shape from Feature Extractor: {audio_features_dict['audio_values'].shape}")
|
507 |
+
|
508 |
+
new_text_with_audio, actual_mel_frames_per_sample = [], to_py_obj(
|
509 |
+
audio_features_dict["audio_attention_mask"].sum(axis=-1))
|
510 |
+
if len(actual_mel_frames_per_sample) != len(text): raise ValueError(
|
511 |
+
f"Inconsistent batch for audio/text: {len(actual_mel_frames_per_sample)} audio, {len(text)} text.")
|
512 |
+
|
513 |
+
for i, prompt in enumerate(text):
|
514 |
+
num_soft_tokens = self._compute_audio_embed_size(actual_mel_frames_per_sample[i])
|
515 |
+
audio_token_sequence_str = self.audio_token_str_from_user_code * num_soft_tokens # e.g. "<audio_soft_token>" * N
|
516 |
+
|
517 |
+
# User's original boa_token for replacement was " ", which is risky. Using defined placeholder.
|
518 |
+
if self.audio_placeholder_token in prompt:
|
519 |
+
prompt = prompt.replace(self.audio_placeholder_token, audio_token_sequence_str, 1)
|
520 |
+
else:
|
521 |
+
prompt += audio_token_sequence_str
|
522 |
+
new_text_with_audio.append(prompt)
|
523 |
+
text = new_text_with_audio
|
524 |
+
|
525 |
+
# --- Text Tokenization ---
|
526 |
+
text_tokenizer_kwargs = merged_call_kwargs.get("text_kwargs", {})
|
527 |
+
text_features_dict = self.tokenizer(text=text, return_tensors=None,
|
528 |
+
**text_tokenizer_kwargs) # Get lists/np.arrays
|
529 |
+
|
530 |
+
input_ids_list_of_lists = text_features_dict["input_ids"]
|
531 |
+
if not isinstance(input_ids_list_of_lists, list) or not (
|
532 |
+
input_ids_list_of_lists and isinstance(input_ids_list_of_lists[0], list)):
|
533 |
+
if isinstance(input_ids_list_of_lists, (torch.Tensor, np.ndarray)):
|
534 |
+
input_ids_list_of_lists = to_py_obj(input_ids_list_of_lists)
|
535 |
+
elif isinstance(input_ids_list_of_lists, list) and (
|
536 |
+
not input_ids_list_of_lists or isinstance(input_ids_list_of_lists[0], int)):
|
537 |
+
input_ids_list_of_lists = [input_ids_list_of_lists]
|
538 |
+
|
539 |
+
token_type_ids_list = []
|
540 |
+
for ids_sample in input_ids_list_of_lists:
|
541 |
+
types = [0] * len(ids_sample)
|
542 |
+
for j, token_id_val in enumerate(ids_sample):
|
543 |
+
if self.image_token_id is not None and token_id_val == self.image_token_id:
|
544 |
+
types[j] = 1
|
545 |
+
elif self.audio_token_id != -1 and token_id_val == self.audio_token_id:
|
546 |
+
types[j] = 2
|
547 |
+
token_type_ids_list.append(types)
|
548 |
+
text_features_dict["token_type_ids"] = token_type_ids_list
|
549 |
+
|
550 |
+
# Ensure text_features_dict also has 'attention_mask' if tokenizer applied padding
|
551 |
+
# If tokenizer was called with padding=True/strategy, it would add 'attention_mask'
|
552 |
+
# If called with padding=False (default), 'attention_mask' might be missing or all 1s.
|
553 |
+
# BatchFeature will handle final tensor conversion and padding based on final_rt.
|
554 |
+
|
555 |
+
final_batch_data = {**text_features_dict}
|
556 |
+
if image_features_dict: final_batch_data.update(image_features_dict)
|
557 |
+
if audio_features_dict: final_batch_data.update(audio_features_dict)
|
558 |
+
|
559 |
+
return BatchFeature(data=final_batch_data, tensor_type=final_rt)
|
560 |
|
561 |
def batch_decode(self, *args, **kwargs):
|
562 |
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
565 |
return self.tokenizer.decode(*args, **kwargs)
|
566 |
|
567 |
@property
|
568 |
+
def model_input_names(self) -> List[str]:
|
569 |
+
input_names = set()
|
570 |
+
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
|
571 |
+
input_names.update(self.tokenizer.model_input_names + ["token_type_ids"])
|
572 |
+
|
573 |
+
if hasattr(self, 'image_processor') and self.image_processor is not None:
|
574 |
+
input_names.update(self.image_processor.model_input_names)
|
575 |
+
|
576 |
+
if hasattr(self, 'audio_processor') and self.audio_processor is not None and \
|
577 |
+
hasattr(self.audio_processor, 'model_input_names'):
|
578 |
+
input_names.update(self.audio_processor.model_input_names)
|
579 |
+
elif hasattr(self,
|
580 |
+
'audio_processor') and self.audio_processor is not None: # Fallback if model_input_names not on custom audio_processor
|
581 |
+
input_names.update(["audio_values", "audio_attention_mask"])
|
582 |
+
|
583 |
+
return list(input_names)
|