vrachit commited on
Commit
c555cb0
·
verified ·
1 Parent(s): 4d8819a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -115
README.md CHANGED
@@ -6,202 +6,224 @@ tags:
6
  - base_model:adapter:Qwen/Qwen1.5-1.8B
7
  - lora
8
  - transformers
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
 
 
16
 
17
  ## Model Details
18
 
19
  ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
 
 
 
 
34
 
35
- <!-- Provide the basic links for the model. -->
36
 
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
  ### Direct Use
46
 
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
48
 
49
- [More Information Needed]
50
 
51
- ### Downstream Use [optional]
 
 
52
 
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
54
 
55
- [More Information Needed]
 
56
 
57
- ### Out-of-Scope Use
 
 
 
 
 
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
 
61
- [More Information Needed]
 
 
 
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
 
67
- [More Information Needed]
 
 
 
 
68
 
69
  ### Recommendations
70
 
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
 
81
  ## Training Details
82
 
83
  ### Training Data
84
 
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
 
 
 
 
88
 
89
  ### Training Procedure
90
 
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
 
 
 
 
 
 
 
 
97
 
98
  #### Training Hyperparameters
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
101
 
102
- #### Speeds, Sizes, Times [optional]
103
 
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
 
108
  ## Evaluation
109
 
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
 
114
  #### Testing Data
115
 
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
 
126
  #### Metrics
127
 
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
 
132
  ### Results
133
 
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
 
140
- ## Model Examination [optional]
 
 
 
141
 
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
 
146
  ## Environmental Impact
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
151
 
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
 
158
- ## Technical Specifications [optional]
159
 
160
- ### Model Architecture and Objective
161
 
162
- [More Information Needed]
 
 
 
163
 
164
  ### Compute Infrastructure
165
 
166
- [More Information Needed]
167
-
168
  #### Hardware
169
 
170
- [More Information Needed]
 
171
 
172
  #### Software
173
 
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
 
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
191
 
192
- [More Information Needed]
193
 
194
- ## More Information [optional]
 
 
 
 
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
 
 
 
 
 
 
 
201
 
202
- ## Model Card Contact
203
 
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.17.1
 
6
  - base_model:adapter:Qwen/Qwen1.5-1.8B
7
  - lora
8
  - transformers
9
+ - code-generation
10
+ - python
11
+ - reasoning
12
+ - synthetic-data
13
+ language:
14
+ - en
15
+ license: apache-2.0
16
  ---
17
 
18
+ # Qwen 1.5 1.8B - Python Code Generation with Step-by-Step Reasoning
 
 
 
19
 
20
+ A fine-tuned version of Qwen 1.5 1.8B that generates Python code with detailed step-by-step reasoning explanations. This model teaches users how to solve programming problems by explaining its thought process before writing code.
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This model is fine-tuned using QLoRA on a synthetic dataset of 1,000 Python programming problems enriched with step-by-step reasoning. The model learns to explain its problem-solving approach before generating code, making it ideal for educational purposes and transparent code generation.
 
 
 
 
 
 
 
 
 
 
27
 
28
+ - **Developed by:** [Your Name/Organization]
29
+ - **Model type:** Causal Language Model (Fine-tuned with LoRA adapters)
30
+ - **Language(s):** English (code generation in Python)
31
+ - **License:** Apache 2.0
32
+ - **Finetuned from model:** Qwen/Qwen1.5-1.8B
33
 
34
+ ### Model Sources
35
 
36
+ - **Base Model:** [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B)
37
+ - **Training Data:** Synthetic dataset generated from MBPP and CodeAlpaca using Llama 3.1 8B
 
38
 
39
  ## Uses
40
 
 
 
41
  ### Direct Use
42
 
43
+ This model is designed for:
44
+ - **Educational code generation**: Teaching programming concepts through explained solutions
45
+ - **Transparent AI coding assistants**: Understanding how the model approaches problems
46
+ - **Code explanation**: Generating step-by-step breakdowns of problem-solving strategies
47
+ - **Learning tool**: Helping beginners understand algorithmic thinking
48
 
49
+ ### Example Usage
50
 
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+ from peft import PeftModel
54
 
55
+ # Load base model and tokenizer
56
+ base_model = AutoModelForCausalLM.from_pretrained(
57
+ "Qwen/Qwen1.5-1.8B",
58
+ device_map="auto"
59
+ )
60
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-1.8B")
61
 
62
+ # Load LoRA adapter
63
+ model = PeftModel.from_pretrained(base_model, "[YOUR_MODEL_PATH]")
64
 
65
+ # Generate code with reasoning
66
+ prompt = "Write a Python function to find the longest common prefix in a list of strings."
67
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
68
+ outputs = model.generate(**inputs, max_new_tokens=512)
69
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
70
+ ```
71
 
72
+ ### Out-of-Scope Use
73
 
74
+ - **Production-critical systems**: This model is fine-tuned on a limited dataset and should not be used for safety-critical applications
75
+ - **Non-Python languages**: The model is specifically trained on Python problems
76
+ - **Complex software architecture**: Best suited for algorithm-level problems, not large-scale system design
77
+ - **Security-sensitive code**: Should not be used for generating cryptographic or security-critical code without expert review
78
 
79
  ## Bias, Risks, and Limitations
80
 
81
+ ### Limitations
82
 
83
+ 1. **Dataset size**: Trained on only 1,000 examples, may not generalize to all problem types
84
+ 2. **Teacher model quality**: Synthetic data generated by Llama 3.1 8B may contain errors
85
+ 3. **Small test set**: Evaluated on only 7 problems, true generalization unknown
86
+ 4. **Potential overfitting**: High accuracy on test set may indicate memorization rather than true learning
87
+ 5. **No code validation**: Training data was not validated for correctness before fine-tuning
88
 
89
  ### Recommendations
90
 
91
+ - Always review and test generated code before using in production
92
+ - Use as a learning tool rather than a replacement for human expertise
93
+ - Validate outputs against test cases and edge cases
94
+ - Consider the model's explanations as one perspective, not absolute truth
 
 
 
 
 
95
 
96
  ## Training Details
97
 
98
  ### Training Data
99
 
100
+ - **Source datasets**: MBPP (Mostly Basic Programming Problems) and CodeAlpaca
101
+ - **Dataset size**: 1,000 Python programming problems
102
+ - **Data generation**: Synthetic step-by-step reasoning generated using Llama 3.1 8B Instant via Groq API
103
+ - **Data structure**: Each example contains:
104
+ - Original programming problem
105
+ - Step-by-step reasoning (problem understanding, algorithm design, implementation strategy)
106
+ - Python solution
107
 
108
  ### Training Procedure
109
 
110
+ #### Fine-tuning Method
 
 
 
 
111
 
112
+ - **Technique**: QLoRA (Quantized Low-Rank Adaptation)
113
+ - **Quantization**: 4-bit quantization for memory efficiency
114
+ - **LoRA Configuration**:
115
+ - Rank (r): 8
116
+ - Alpha: 16
117
+ - Target modules: q_proj, k_proj, v_proj, o_proj (attention layers)
118
+ - Dropout: 0.05
119
 
120
  #### Training Hyperparameters
121
 
122
+ - **Training epochs**: 3
123
+ - **Learning rate**: 2e-4
124
+ - **Optimizer**: paged_adamw_8bit
125
+ - **Batch size**: [Specify if known]
126
+ - **Training regime**: Mixed precision (4-bit quantization)
127
+ - **Hardware**: Google Colab T4 GPU (free tier)
128
+ - **Framework**: PEFT 0.17.1, Transformers, bitsandbytes
129
 
130
+ #### Training Time
131
 
132
+ - Approximately [X hours] on Google Colab T4 GPU
 
 
133
 
134
  ## Evaluation
135
 
136
+ ### Testing Data & Metrics
 
 
137
 
138
  #### Testing Data
139
 
140
+ - **Test set size**: 7 diverse Python programming problems
141
+ - **Problem types**: Mix of algorithmic challenges from the training distribution
 
 
 
 
 
 
 
142
 
143
  #### Metrics
144
 
145
+ - **Primary metric**: Pass@1 (functional correctness - does the generated code execute correctly?)
146
+ - **Secondary metric**: Reasoning structure presence (does output include step-by-step explanation?)
 
147
 
148
  ### Results
149
 
150
+ | Metric | Base Model (Qwen 1.5 1.8B) | Fine-tuned Model |
151
+ |--------|---------------------------|------------------|
152
+ | Pass@1 | 75% | 100% |
153
+ | Reasoning Structure | Inconsistent | 100% |
 
154
 
155
+ **Key Findings**:
156
+ - **+25 percentage point improvement** in functional correctness
157
+ - **100% of outputs** now include structured step-by-step reasoning
158
+ - All 7 test cases passed successfully
159
 
160
+ **Important Note**: Results are based on a small test set (7 examples). Larger-scale evaluation needed to confirm generalization.
 
 
161
 
162
  ## Environmental Impact
163
 
164
+ - **Hardware Type**: NVIDIA T4 GPU (Google Colab)
165
+ - **Hours used**: ~[X hours for fine-tuning]
166
+ - **Cloud Provider**: Google Cloud Platform
167
+ - **Compute Region**: [Specify if known]
168
+ - **Carbon Emitted**: Minimal due to use of QLoRA on single T4 GPU
169
 
170
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
 
 
 
 
171
 
172
+ ## Technical Specifications
173
 
174
+ ### Model Architecture
175
 
176
+ - **Base architecture**: Qwen 1.5 1.8B (Transformer decoder)
177
+ - **Fine-tuning method**: LoRA adapters on attention layers
178
+ - **Total parameters**: 1.8B (base) + ~4.7M (LoRA adapters)
179
+ - **Trainable parameters**: ~4.7M (0.26% of total)
180
 
181
  ### Compute Infrastructure
182
 
 
 
183
  #### Hardware
184
 
185
+ - GPU: NVIDIA T4 (16GB VRAM)
186
+ - Platform: Google Colab (free tier)
187
 
188
  #### Software
189
 
190
+ - PEFT 0.17.1
191
+ - Transformers
192
+ - bitsandbytes (for 4-bit quantization)
193
+ - PyTorch
194
+ - Groq API (for synthetic data generation)
 
 
 
 
 
 
195
 
196
+ ## Project Insights
197
 
198
+ ### What Worked Well
199
 
200
+ - Cross-model knowledge distillation (8B teacher 1.8B student)
201
+ - QLoRA enabled fine-tuning on free-tier GPU
202
+ - Structured prompts for synthetic data generation
203
+ - Teaching reasoning process alongside code generation
204
 
205
+ ### Future Improvements
206
 
207
+ 1. **Better teacher model**: Use Llama 3.1 70B for higher-quality synthetic data
208
+ 2. **Data validation**: Verify all generated code executes correctly before training
209
+ 3. **Larger dataset**: Scale to 5,000-10,000 examples
210
+ 4. **Robust evaluation**: Test on 50-100 problems from benchmarks like HumanEval
211
+ 5. **Higher LoRA rank**: Experiment with rank 16 or 32 for more capacity
212
 
213
+ ## Citation
214
 
215
+ If you use this model, please cite:
216
 
217
+ ```bibtex
218
+ @misc{qwen15-code-reasoning,
219
+ author = {[Rachit Verma]},
220
+ title = {Qwen 1.5 1.8B Fine-tuned for Python Code Generation with Reasoning},
221
+ year = {2025},
222
+ publisher = {HuggingFace},
223
+ }
224
+ ```
225
 
226
+ ## Model Card Authors
227
 
228
+ [Rachit Verma]
 
229