import torch import torch.nn as nn from transformers import PreTrainedModel from stu import STU from modules_stu import Attention from utils import nearest_power_of_two from flash_stu.config import FlashSTUConfig try: from liger_kernel.transformers.swiglu import LigerSwiGLUMLP as TritonMLP triton_mlp = True except ImportError as e: print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.") from modules import MLP triton_mlp = False try: from liger_kernel.transformers.rms_norm import LigerRMSNorm as TritonNorm triton_norm = True except ImportError as e: print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.") from torch.nn import RMSNorm triton_norm = False class STULayer(nn.Module): def __init__(self, config, phi, n): super(STULayer, self).__init__() self.stu_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) self.stu = STU(config, phi, n) self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype) # TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for MLP self.stu_norm = self.stu_norm.to(dtype=config.torch_dtype) self.mlp = self.mlp.to(dtype=config.torch_dtype) self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.stu(self.stu_norm(x)) x = x + self.mlp(self.mlp_norm(x)) return x class AttentionLayer(nn.Module): def __init__(self, config) -> None: super(AttentionLayer, self).__init__() self.attn_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) self.attn = Attention(config) self.mlp_norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) self.mlp = TritonMLP(config) if triton_mlp else MLP(config, dtype=config.torch_dtype) # TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for MLP self.attn_norm = self.attn_norm.to(dtype=config.torch_dtype) self.mlp = self.mlp.to(dtype=config.torch_dtype) self.mlp_norm = self.mlp_norm.to(dtype=config.torch_dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.attn(self.attn_norm(x)) x = x + self.mlp(self.mlp_norm(x)) return x class FlashSTU(PreTrainedModel): config_class = FlashSTUConfig def __init__(self, config, phi) -> None: super(FlashSTU, self).__init__(config) self.n_layers = config.n_layers self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True) self.phi = phi self.use_approx = config.use_approx # TODO: Add support for Liger-Kernel Embedding once no longer experimental self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd, dtype=config.torch_dtype) self.dropout = nn.Dropout(config.dropout) self.layers = nn.ModuleList() for layer_idx in range(self.n_layers): # For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887 if layer_idx % 2 == 0: self.layers.append(STULayer(config, self.phi, self.n)) else: self.layers.append(AttentionLayer(config) if config.use_attn else STULayer(config, self.phi, self.n)) self.norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd, dtype=config.torch_dtype) # TODO: Write Issue in Liger-Kernel repo to support user-defined dtype for RMS Norm self.norm = self.norm.to(dtype=config.torch_dtype) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=config.bias, dtype=config.torch_dtype) self.tok_emb.weight = self.lm_head.weight self.std = (config.n_embd) ** -0.5 self.apply(self._init_weights) print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,)) def forward(self, x: torch.Tensor) -> torch.tensor: tok_emb = self.tok_emb(x) x = self.dropout(tok_emb) for layer in self.layers: x = layer(x) x = self.norm(x) y_hat = self.lm_head(x) return y_hat def _get_num_params(self): n_params = sum(p.numel() for p in self.parameters()) if hasattr(self, "pos_emb") and self.pos_emb is not None: n_params -= self.pos_emb.weight.numel() if self.tok_emb.weight is not self.lm_head.weight: n_params -= self.tok_emb.weight.numel() return n_params def _init_weights(self, module): if isinstance(module, nn.Linear): if hasattr(module, "SCALE_INIT"): self.std *= (2 * self.n_layers) ** -0.5 torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=self.std) elif isinstance(module, STU): if self.use_approx: torch.nn.init.xavier_normal_(module.M_inputs) torch.nn.init.xavier_normal_(module.M_filters) else: torch.nn.init.xavier_normal_(module.M_phi_plus) torch.nn.init.xavier_normal_(module.M_phi_minus) elif isinstance(module, Attention): torch.nn.init.xavier_normal_(module.c_attn.weight) torch.nn.init.xavier_normal_(module.c_proj.weight) if module.c_attn.bias is not None: torch.nn.init.zeros_(module.c_attn.bias) if module.c_proj.bias is not None: torch.nn.init.zeros_(module.c_proj.bias)