--- library_name: transformers license: mit base_model: ByteDance-Seed/Seed-Coder-8B-Base tags: - generated_from_trainer datasets: - axolotl-ai-internal/gpumode-py2triton-reasoning-v2 model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: ByteDance-Seed/Seed-Coder-8B-Base plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true chat_template: llama3 datasets: - path: axolotl-ai-internal/gpumode-py2triton-reasoning-v2 type: chat_template split: train dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: ./outputs/out sequence_len: 16384 sample_packing: true pad_to_sequence_len: true wandb_project: seed-coder-8b-grpo-triton wandb_entity: axolotl-ai wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch_fused max_grad_norm: 0.1 neftune_noise_alpha: 10 lr_scheduler: cosine learning_rate: 1e-6 lr_groups: - name: embeddings modules: - embed_tokens - lm_head lr: 0.00003 # scalu up LR for embeddings as these are unused tokens bf16: true tf32: true gradient_checkpointing: offload gradient_checkpointing_kwargs: use_reentrant: false logging_steps: 1 flash_attention: true warmup_steps: 100 evals_per_epoch: 5 saves_per_epoch: 1 weight_decay: 0.01 deepspeed: deepspeed_configs/zero1.json special_tokens: eos_token: <|eot_id|> added_tokens_overrides: 7: <|start_header_id|> 8: <|end_header_id|> 9: <|eot_id|> 10: 11: fix_untrained_tokens: [7, 8, 9, 10, 11] ```

# outputs/out This model is a fine-tuned version of [ByteDance-Seed/Seed-Coder-8B-Base](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base) on the axolotl-ai-internal/gpumode-py2triton-reasoning-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 10 - total_train_batch_size: 20 - total_eval_batch_size: 20 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5293 | 0.0046 | 1 | 5.7151 | | 0.4449 | 0.2018 | 44 | 0.4878 | | 0.425 | 0.4037 | 88 | 0.4319 | | 0.3437 | 0.6055 | 132 | 0.3322 | | 0.2903 | 0.8073 | 176 | 0.2893 | | 0.2528 | 1.0092 | 220 | 0.2677 | | 0.2578 | 1.2110 | 264 | 0.2531 | | 0.2522 | 1.4128 | 308 | 0.2414 | | 0.2403 | 1.6147 | 352 | 0.2352 | | 0.232 | 1.8165 | 396 | 0.2252 | | 0.2093 | 2.0183 | 440 | 0.2360 | | 0.2406 | 2.2202 | 484 | 0.2311 | | 0.2523 | 2.4220 | 528 | 0.2260 | | 0.2139 | 2.6239 | 572 | 0.2259 | | 0.2296 | 2.8257 | 616 | 0.2177 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1