from transformers import PretrainedConfig from typing import List class LMConfig(PretrainedConfig): model_type = "nanochat" def __init__( self, dim: int = 896, n_layers: int = 24, tie_word_embeddings: bool = True, ########################################### attention:str='GQA', #GQA n_heads: int = 14, n_kv_heads: int = 2, #MLA q_lora_rank: int=0, kv_lora_rank: int=512, qk_nope_head_dim: int=64, qk_rope_head_dim:int=64, v_head_dim:int=64, ############################################# vocab_size: int = 151650, # vocab_size: int = 6400, hidden_dim: int = None, multiple_of: int = 64, norm_eps: float = 1e-5, max_seq_len: int = 512, rope_theta: int = 1e6, dropout: float = 0.0, flash_attn: bool = True, #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### use_moe: bool = False, #################################################### num_experts_per_tok: int = 2, n_routed_experts: int = 4, n_shared_experts: bool = True, scoring_func: str = 'softmax', aux_loss_alpha: float = 0.1, seq_aux: bool = True, norm_topk_prob: bool = True, **kwargs, ): super().__init__(tie_word_embeddings=tie_word_embeddings,**kwargs) self.dim = dim self.n_layers = n_layers self.vocab_size = vocab_size self.hidden_dim = hidden_dim self.multiple_of = multiple_of self.norm_eps = norm_eps self.max_seq_len = max_seq_len self.rope_theta = rope_theta self.dropout = dropout self.flash_attn = flash_attn ##################################################### self.attention=attention #GQA self.n_heads = n_heads self.n_kv_heads = n_kv_heads #MLA self.q_lora_rank = q_lora_rank self.kv_lora_rank = kv_lora_rank self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.v_head_dim = v_head_dim #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### self.use_moe = use_moe self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量 self.n_routed_experts = n_routed_experts # 总的专家数量 self.n_shared_experts = n_shared_experts # 共享专家 self.scoring_func = scoring_func # 评分函数,默认为'softmax' self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数 self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失 self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率