Upload PhiForCausalLM
Browse files- config.json +32 -0
- configuration_phi.py +63 -0
- generation_config.json +4 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +332 -0
- modeling_phi.py +960 -0
config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/depot/euge/data/jadhav14/hf_models/neuralphi-2.4",
|
| 3 |
+
"activation_function": "gelu_new",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"PhiForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"attn_pdrop": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_phi.PhiConfig",
|
| 10 |
+
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"embd_pdrop": 0.0,
|
| 13 |
+
"flash_attn": false,
|
| 14 |
+
"flash_rotary": false,
|
| 15 |
+
"fused_dense": false,
|
| 16 |
+
"img_processor": null,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"layer_norm_epsilon": 1e-05,
|
| 19 |
+
"model_type": "phi-msft",
|
| 20 |
+
"n_embd": 2560,
|
| 21 |
+
"n_head": 32,
|
| 22 |
+
"n_head_kv": null,
|
| 23 |
+
"n_inner": null,
|
| 24 |
+
"n_layer": 32,
|
| 25 |
+
"n_positions": 2048,
|
| 26 |
+
"resid_pdrop": 0.1,
|
| 27 |
+
"rotary_dim": 32,
|
| 28 |
+
"tie_word_embeddings": false,
|
| 29 |
+
"torch_dtype": "float16",
|
| 30 |
+
"transformers_version": "4.36.2",
|
| 31 |
+
"vocab_size": 50296
|
| 32 |
+
}
|
configuration_phi.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
from typing import Optional
|
| 6 |
+
|
| 7 |
+
from transformers import PretrainedConfig
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class PhiConfig(PretrainedConfig):
|
| 11 |
+
"""Phi configuration."""
|
| 12 |
+
|
| 13 |
+
model_type = "phi-msft"
|
| 14 |
+
attribute_map = {
|
| 15 |
+
"max_position_embeddings": "n_positions",
|
| 16 |
+
"hidden_size": "n_embd",
|
| 17 |
+
"num_attention_heads": "n_head",
|
| 18 |
+
"num_hidden_layers": "n_layer",
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
vocab_size: int = 50304,
|
| 24 |
+
n_positions: int = 2048,
|
| 25 |
+
n_embd: int = 1024,
|
| 26 |
+
n_layer: int = 20,
|
| 27 |
+
n_inner: Optional[int] = None,
|
| 28 |
+
n_head: int = 16,
|
| 29 |
+
n_head_kv: Optional[int] = None,
|
| 30 |
+
rotary_dim: Optional[int] = 32,
|
| 31 |
+
activation_function: Optional[str] = "gelu_new",
|
| 32 |
+
flash_attn: bool = False,
|
| 33 |
+
flash_rotary: bool = False,
|
| 34 |
+
fused_dense: bool = False,
|
| 35 |
+
attn_pdrop: float = 0.0,
|
| 36 |
+
embd_pdrop: float = 0.0,
|
| 37 |
+
resid_pdrop: float = 0.0,
|
| 38 |
+
layer_norm_epsilon: float = 1e-5,
|
| 39 |
+
initializer_range: float = 0.02,
|
| 40 |
+
tie_word_embeddings: bool = False,
|
| 41 |
+
pad_vocab_size_multiple: int = 1,
|
| 42 |
+
**kwargs
|
| 43 |
+
) -> None:
|
| 44 |
+
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
| 45 |
+
self.n_positions = n_positions
|
| 46 |
+
self.n_embd = n_embd
|
| 47 |
+
self.n_layer = n_layer
|
| 48 |
+
self.n_inner = n_inner
|
| 49 |
+
self.n_head = n_head
|
| 50 |
+
self.n_head_kv = n_head_kv
|
| 51 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
| 52 |
+
self.activation_function = activation_function
|
| 53 |
+
self.flash_attn = flash_attn
|
| 54 |
+
self.flash_rotary = flash_rotary
|
| 55 |
+
self.fused_dense = fused_dense
|
| 56 |
+
self.attn_pdrop = attn_pdrop
|
| 57 |
+
self.embd_pdrop = embd_pdrop
|
| 58 |
+
self.resid_pdrop = resid_pdrop
|
| 59 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 60 |
+
self.initializer_range = initializer_range
|
| 61 |
+
|
| 62 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 63 |
+
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.36.2"
|
| 4 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1125d24215eef8c56451910341bb018b7d5970d9e8faa5fffb751a89ea0e761e
|
| 3 |
+
size 4977839384
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e16222009c1fcf6ae6b84bc457721a66e0584e124225609df1043b5d7f2a4132
|
| 3 |
+
size 572303840
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 5550108912
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.linear.bias": "model-00002-of-00002.safetensors",
|
| 7 |
+
"lm_head.linear.weight": "model-00002-of-00002.safetensors",
|
| 8 |
+
"lm_head.ln.bias": "model-00002-of-00002.safetensors",
|
| 9 |
+
"lm_head.ln.weight": "model-00002-of-00002.safetensors",
|
| 10 |
+
"transformer.embd.wte.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"transformer.h.0.ln.bias": "model-00001-of-00002.safetensors",
|
| 12 |
+
"transformer.h.0.ln.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"transformer.h.0.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 14 |
+
"transformer.h.0.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"transformer.h.0.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"transformer.h.0.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"transformer.h.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"transformer.h.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"transformer.h.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 20 |
+
"transformer.h.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"transformer.h.1.ln.bias": "model-00001-of-00002.safetensors",
|
| 22 |
+
"transformer.h.1.ln.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"transformer.h.1.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 24 |
+
"transformer.h.1.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"transformer.h.1.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 26 |
+
"transformer.h.1.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"transformer.h.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 28 |
+
"transformer.h.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"transformer.h.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 30 |
+
"transformer.h.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"transformer.h.10.ln.bias": "model-00001-of-00002.safetensors",
|
| 32 |
+
"transformer.h.10.ln.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"transformer.h.10.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 34 |
+
"transformer.h.10.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"transformer.h.10.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 36 |
+
"transformer.h.10.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"transformer.h.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 38 |
+
"transformer.h.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"transformer.h.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"transformer.h.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"transformer.h.11.ln.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"transformer.h.11.ln.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"transformer.h.11.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 44 |
+
"transformer.h.11.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"transformer.h.11.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 46 |
+
"transformer.h.11.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"transformer.h.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 48 |
+
"transformer.h.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"transformer.h.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 50 |
+
"transformer.h.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"transformer.h.12.ln.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"transformer.h.12.ln.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"transformer.h.12.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"transformer.h.12.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"transformer.h.12.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 56 |
+
"transformer.h.12.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"transformer.h.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 58 |
+
"transformer.h.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"transformer.h.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 60 |
+
"transformer.h.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"transformer.h.13.ln.bias": "model-00001-of-00002.safetensors",
|
| 62 |
+
"transformer.h.13.ln.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"transformer.h.13.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 64 |
+
"transformer.h.13.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"transformer.h.13.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"transformer.h.13.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"transformer.h.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 68 |
+
"transformer.h.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"transformer.h.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 70 |
+
"transformer.h.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"transformer.h.14.ln.bias": "model-00001-of-00002.safetensors",
|
| 72 |
+
"transformer.h.14.ln.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"transformer.h.14.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 74 |
+
"transformer.h.14.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"transformer.h.14.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"transformer.h.14.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"transformer.h.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"transformer.h.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"transformer.h.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 80 |
+
"transformer.h.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"transformer.h.15.ln.bias": "model-00001-of-00002.safetensors",
|
| 82 |
+
"transformer.h.15.ln.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"transformer.h.15.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 84 |
+
"transformer.h.15.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"transformer.h.15.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 86 |
+
"transformer.h.15.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"transformer.h.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 88 |
+
"transformer.h.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"transformer.h.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 90 |
+
"transformer.h.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"transformer.h.16.ln.bias": "model-00001-of-00002.safetensors",
|
| 92 |
+
"transformer.h.16.ln.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"transformer.h.16.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 94 |
+
"transformer.h.16.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"transformer.h.16.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 96 |
+
"transformer.h.16.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"transformer.h.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 98 |
+
"transformer.h.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"transformer.h.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"transformer.h.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"transformer.h.17.ln.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"transformer.h.17.ln.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"transformer.h.17.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 104 |
+
"transformer.h.17.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"transformer.h.17.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 106 |
+
"transformer.h.17.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"transformer.h.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 108 |
+
"transformer.h.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"transformer.h.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 110 |
+
"transformer.h.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"transformer.h.18.ln.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"transformer.h.18.ln.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"transformer.h.18.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"transformer.h.18.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"transformer.h.18.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 116 |
+
"transformer.h.18.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"transformer.h.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 118 |
+
"transformer.h.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"transformer.h.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 120 |
+
"transformer.h.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"transformer.h.19.ln.bias": "model-00001-of-00002.safetensors",
|
| 122 |
+
"transformer.h.19.ln.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"transformer.h.19.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 124 |
+
"transformer.h.19.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"transformer.h.19.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 126 |
+
"transformer.h.19.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"transformer.h.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 128 |
+
"transformer.h.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"transformer.h.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 130 |
+
"transformer.h.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"transformer.h.2.ln.bias": "model-00001-of-00002.safetensors",
|
| 132 |
+
"transformer.h.2.ln.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"transformer.h.2.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 134 |
+
"transformer.h.2.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"transformer.h.2.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"transformer.h.2.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"transformer.h.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 138 |
+
"transformer.h.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"transformer.h.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 140 |
+
"transformer.h.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"transformer.h.20.ln.bias": "model-00001-of-00002.safetensors",
|
| 142 |
+
"transformer.h.20.ln.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"transformer.h.20.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 144 |
+
"transformer.h.20.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"transformer.h.20.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 146 |
+
"transformer.h.20.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"transformer.h.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"transformer.h.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"transformer.h.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 150 |
+
"transformer.h.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"transformer.h.21.ln.bias": "model-00001-of-00002.safetensors",
|
| 152 |
+
"transformer.h.21.ln.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"transformer.h.21.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 154 |
+
"transformer.h.21.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"transformer.h.21.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 156 |
+
"transformer.h.21.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"transformer.h.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 158 |
+
"transformer.h.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"transformer.h.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 160 |
+
"transformer.h.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"transformer.h.22.ln.bias": "model-00001-of-00002.safetensors",
|
| 162 |
+
"transformer.h.22.ln.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"transformer.h.22.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 164 |
+
"transformer.h.22.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"transformer.h.22.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 166 |
+
"transformer.h.22.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"transformer.h.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 168 |
+
"transformer.h.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"transformer.h.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 170 |
+
"transformer.h.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"transformer.h.23.ln.bias": "model-00001-of-00002.safetensors",
|
| 172 |
+
"transformer.h.23.ln.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"transformer.h.23.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"transformer.h.23.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"transformer.h.23.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 176 |
+
"transformer.h.23.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"transformer.h.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 178 |
+
"transformer.h.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"transformer.h.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 180 |
+
"transformer.h.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"transformer.h.24.ln.bias": "model-00001-of-00002.safetensors",
|
| 182 |
+
"transformer.h.24.ln.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"transformer.h.24.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 184 |
+
"transformer.h.24.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"transformer.h.24.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"transformer.h.24.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"transformer.h.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 188 |
+
"transformer.h.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"transformer.h.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 190 |
+
"transformer.h.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"transformer.h.25.ln.bias": "model-00001-of-00002.safetensors",
|
| 192 |
+
"transformer.h.25.ln.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"transformer.h.25.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 194 |
+
"transformer.h.25.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"transformer.h.25.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 196 |
+
"transformer.h.25.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"transformer.h.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 198 |
+
"transformer.h.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"transformer.h.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 200 |
+
"transformer.h.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"transformer.h.26.ln.bias": "model-00001-of-00002.safetensors",
|
| 202 |
+
"transformer.h.26.ln.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"transformer.h.26.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 204 |
+
"transformer.h.26.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"transformer.h.26.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 206 |
+
"transformer.h.26.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"transformer.h.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 208 |
+
"transformer.h.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"transformer.h.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 210 |
+
"transformer.h.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"transformer.h.27.ln.bias": "model-00001-of-00002.safetensors",
|
| 212 |
+
"transformer.h.27.ln.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"transformer.h.27.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 214 |
+
"transformer.h.27.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"transformer.h.27.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 216 |
+
"transformer.h.27.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"transformer.h.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 218 |
+
"transformer.h.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"transformer.h.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 220 |
+
"transformer.h.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"transformer.h.28.ln.bias": "model-00001-of-00002.safetensors",
|
| 222 |
+
"transformer.h.28.ln.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"transformer.h.28.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 224 |
+
"transformer.h.28.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"transformer.h.28.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 226 |
+
"transformer.h.28.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"transformer.h.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 228 |
+
"transformer.h.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"transformer.h.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 230 |
+
"transformer.h.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"transformer.h.29.ln.bias": "model-00001-of-00002.safetensors",
|
| 232 |
+
"transformer.h.29.ln.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"transformer.h.29.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 234 |
+
"transformer.h.29.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 235 |
+
"transformer.h.29.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 236 |
+
"transformer.h.29.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"transformer.h.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 238 |
+
"transformer.h.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"transformer.h.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 240 |
+
"transformer.h.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"transformer.h.3.ln.bias": "model-00001-of-00002.safetensors",
|
| 242 |
+
"transformer.h.3.ln.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"transformer.h.3.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 244 |
+
"transformer.h.3.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"transformer.h.3.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 246 |
+
"transformer.h.3.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"transformer.h.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 248 |
+
"transformer.h.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"transformer.h.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 250 |
+
"transformer.h.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"transformer.h.30.ln.bias": "model-00001-of-00002.safetensors",
|
| 252 |
+
"transformer.h.30.ln.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"transformer.h.30.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 254 |
+
"transformer.h.30.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"transformer.h.30.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 256 |
+
"transformer.h.30.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"transformer.h.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 258 |
+
"transformer.h.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"transformer.h.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 260 |
+
"transformer.h.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"transformer.h.31.ln.bias": "model-00002-of-00002.safetensors",
|
| 262 |
+
"transformer.h.31.ln.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"transformer.h.31.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 264 |
+
"transformer.h.31.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"transformer.h.31.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 266 |
+
"transformer.h.31.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"transformer.h.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
| 268 |
+
"transformer.h.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"transformer.h.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
| 270 |
+
"transformer.h.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"transformer.h.4.ln.bias": "model-00001-of-00002.safetensors",
|
| 272 |
+
"transformer.h.4.ln.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"transformer.h.4.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 274 |
+
"transformer.h.4.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"transformer.h.4.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 276 |
+
"transformer.h.4.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"transformer.h.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 278 |
+
"transformer.h.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"transformer.h.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 280 |
+
"transformer.h.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"transformer.h.5.ln.bias": "model-00001-of-00002.safetensors",
|
| 282 |
+
"transformer.h.5.ln.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"transformer.h.5.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 284 |
+
"transformer.h.5.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"transformer.h.5.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 286 |
+
"transformer.h.5.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"transformer.h.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 288 |
+
"transformer.h.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"transformer.h.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 290 |
+
"transformer.h.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"transformer.h.6.ln.bias": "model-00001-of-00002.safetensors",
|
| 292 |
+
"transformer.h.6.ln.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"transformer.h.6.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 294 |
+
"transformer.h.6.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"transformer.h.6.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 296 |
+
"transformer.h.6.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 297 |
+
"transformer.h.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 298 |
+
"transformer.h.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 299 |
+
"transformer.h.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 300 |
+
"transformer.h.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 301 |
+
"transformer.h.7.ln.bias": "model-00001-of-00002.safetensors",
|
| 302 |
+
"transformer.h.7.ln.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"transformer.h.7.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 304 |
+
"transformer.h.7.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 305 |
+
"transformer.h.7.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 306 |
+
"transformer.h.7.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"transformer.h.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 308 |
+
"transformer.h.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"transformer.h.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 310 |
+
"transformer.h.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"transformer.h.8.ln.bias": "model-00001-of-00002.safetensors",
|
| 312 |
+
"transformer.h.8.ln.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"transformer.h.8.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 314 |
+
"transformer.h.8.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"transformer.h.8.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 316 |
+
"transformer.h.8.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"transformer.h.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 318 |
+
"transformer.h.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"transformer.h.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 320 |
+
"transformer.h.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"transformer.h.9.ln.bias": "model-00001-of-00002.safetensors",
|
| 322 |
+
"transformer.h.9.ln.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"transformer.h.9.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 324 |
+
"transformer.h.9.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 325 |
+
"transformer.h.9.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 326 |
+
"transformer.h.9.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 327 |
+
"transformer.h.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 328 |
+
"transformer.h.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"transformer.h.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 330 |
+
"transformer.h.9.mlp.fc2.weight": "model-00001-of-00002.safetensors"
|
| 331 |
+
}
|
| 332 |
+
}
|
modeling_phi.py
ADDED
|
@@ -0,0 +1,960 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
#
|
| 4 |
+
# Copyright (c) 2022, Tri Dao, [email protected].
|
| 5 |
+
# Licensed under the BSD 3-Clause License.
|
| 6 |
+
|
| 7 |
+
from __future__ import annotations
|
| 8 |
+
|
| 9 |
+
import math
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
from einops import rearrange, repeat
|
| 16 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 17 |
+
from transformers.activations import ACT2FN
|
| 18 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 19 |
+
|
| 20 |
+
from .configuration_phi import PhiConfig
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
| 24 |
+
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
| 25 |
+
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
|
| 26 |
+
from flash_attn.ops.fused_dense import FusedDense
|
| 27 |
+
except:
|
| 28 |
+
pad_input, unpad_input = None, None
|
| 29 |
+
FlashRotaryEmbedding = None
|
| 30 |
+
FlashSelfAttention, FlashCrossAttention = None, None
|
| 31 |
+
FusedDense = None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class InferenceParams:
|
| 36 |
+
"""Inference parameters passed to model to efficiently calculate
|
| 37 |
+
and store context during inference.
|
| 38 |
+
|
| 39 |
+
Reference:
|
| 40 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
max_seqlen: Maximum sequence length.
|
| 44 |
+
max_batch_size: Maximum batch size.
|
| 45 |
+
seqlen_offset: Sequence length offset.
|
| 46 |
+
batch_size_offset: Batch size offset.
|
| 47 |
+
key_value_memory_dict: Key value memory dictionary.
|
| 48 |
+
lengths_per_sample: Lengths per sample.
|
| 49 |
+
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
| 53 |
+
|
| 54 |
+
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
| 55 |
+
|
| 56 |
+
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
| 57 |
+
|
| 58 |
+
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
| 59 |
+
|
| 60 |
+
key_value_memory_dict: Dict[str, Any] = field(
|
| 61 |
+
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class Embedding(nn.Module):
|
| 68 |
+
"""Token embedding with dropout."""
|
| 69 |
+
|
| 70 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
| 71 |
+
super().__init__()
|
| 72 |
+
|
| 73 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
| 74 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 75 |
+
|
| 76 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
| 77 |
+
input_shape = input_ids.size()
|
| 78 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 79 |
+
|
| 80 |
+
hidden_states = self.wte(input_ids)
|
| 81 |
+
hidden_states = self.drop(hidden_states)
|
| 82 |
+
|
| 83 |
+
return hidden_states
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _apply_rotary_emb(
|
| 87 |
+
x: torch.FloatTensor,
|
| 88 |
+
cos: torch.FloatTensor,
|
| 89 |
+
sin: torch.FloatTensor,
|
| 90 |
+
) -> torch.FloatTensor:
|
| 91 |
+
_, seqlen, _, _ = x.shape
|
| 92 |
+
_, rotary_dim = cos.shape
|
| 93 |
+
rotary_dim *= 2
|
| 94 |
+
|
| 95 |
+
x_rot = x[:, :, :, :rotary_dim]
|
| 96 |
+
x_pass = x[:, :, :, rotary_dim:]
|
| 97 |
+
|
| 98 |
+
x1, x2 = x_rot.chunk(2, dim=-1)
|
| 99 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 100 |
+
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
| 101 |
+
|
| 102 |
+
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
| 103 |
+
|
| 104 |
+
return torch.cat([x_rot, x_pass], axis=-1)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _apply_rotary_emb_kv(
|
| 108 |
+
kv: torch.FloatTensor,
|
| 109 |
+
cos: torch.FloatTensor,
|
| 110 |
+
sin: torch.FloatTensor,
|
| 111 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
| 112 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
| 113 |
+
) -> torch.FloatTensor:
|
| 114 |
+
_, seqlen, _, _, _ = kv.shape
|
| 115 |
+
_, rotary_dim = cos.shape
|
| 116 |
+
rotary_dim *= 2
|
| 117 |
+
|
| 118 |
+
k_rot = kv[:, :, 0, :, :rotary_dim]
|
| 119 |
+
k_pass = kv[:, :, 0, :, rotary_dim:]
|
| 120 |
+
|
| 121 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
| 122 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 123 |
+
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
| 124 |
+
|
| 125 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
| 126 |
+
|
| 127 |
+
return torch.cat(
|
| 128 |
+
[
|
| 129 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
| 130 |
+
kv[:, :, 1:2, :, :],
|
| 131 |
+
],
|
| 132 |
+
axis=2,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def _apply_rotary_emb_qkv(
|
| 137 |
+
qkv: torch.FloatTensor,
|
| 138 |
+
cos: torch.FloatTensor,
|
| 139 |
+
sin: torch.FloatTensor,
|
| 140 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
| 141 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
| 142 |
+
) -> torch.FloatTensor:
|
| 143 |
+
_, seqlen, _, _, _ = qkv.shape
|
| 144 |
+
_, rotary_dim = cos.shape
|
| 145 |
+
rotary_dim *= 2
|
| 146 |
+
|
| 147 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
| 148 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
| 149 |
+
|
| 150 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
| 151 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
| 152 |
+
|
| 153 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
| 154 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
| 155 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 156 |
+
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
| 157 |
+
|
| 158 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
| 159 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
| 160 |
+
|
| 161 |
+
return torch.cat(
|
| 162 |
+
[
|
| 163 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
| 164 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
| 165 |
+
qkv[:, :, 2:3, :, :],
|
| 166 |
+
],
|
| 167 |
+
axis=2,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class RotaryEmbedding(nn.Module):
|
| 172 |
+
"""Rotary positional embedding (RoPE).
|
| 173 |
+
|
| 174 |
+
Reference:
|
| 175 |
+
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
| 176 |
+
https://arxiv.org/pdf/2104.09864.pdf.
|
| 177 |
+
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
def __init__(
|
| 181 |
+
self,
|
| 182 |
+
dim: int,
|
| 183 |
+
base: int = 10000,
|
| 184 |
+
scale_base: Optional[float] = None,
|
| 185 |
+
pos_idx_in_fp32: bool = True,
|
| 186 |
+
max_position_embeddings: int = 2048,
|
| 187 |
+
device: Optional[str] = None,
|
| 188 |
+
**kwargs,
|
| 189 |
+
) -> None:
|
| 190 |
+
super().__init__()
|
| 191 |
+
|
| 192 |
+
if scale_base is not None:
|
| 193 |
+
raise NotImplementedError
|
| 194 |
+
|
| 195 |
+
self.dim = dim
|
| 196 |
+
self.base = float(base)
|
| 197 |
+
self.scale_base = scale_base
|
| 198 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 199 |
+
self.max_position_embeddings = max_position_embeddings
|
| 200 |
+
self.device = device
|
| 201 |
+
|
| 202 |
+
# Generate and save the inverse frequency buffer (non-trainable)
|
| 203 |
+
inv_freq = self._compute_inv_freq(device)
|
| 204 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 205 |
+
|
| 206 |
+
# Generate and save the scale buffer (non-trainable)
|
| 207 |
+
scale = (
|
| 208 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 209 |
+
if scale_base is not None
|
| 210 |
+
else None
|
| 211 |
+
)
|
| 212 |
+
self.register_buffer("scale", scale, persistent=False)
|
| 213 |
+
|
| 214 |
+
# Initialize cached attributes since ONNX can't rely on dynamic initialization
|
| 215 |
+
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
|
| 216 |
+
|
| 217 |
+
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
| 218 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
| 219 |
+
|
| 220 |
+
def _update_cos_sin_cache(
|
| 221 |
+
self,
|
| 222 |
+
seqlen: int,
|
| 223 |
+
device: Optional[str] = None,
|
| 224 |
+
dtype: Optional[torch.dtype] = None,
|
| 225 |
+
) -> None:
|
| 226 |
+
self._seq_len_cached = seqlen
|
| 227 |
+
|
| 228 |
+
# fp32 is preferred since the output of `torch.arange` can be quite large
|
| 229 |
+
# and bf16 would lose a lot of precision
|
| 230 |
+
if self.pos_idx_in_fp32:
|
| 231 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 232 |
+
if self.inv_freq.dtype != torch.float32:
|
| 233 |
+
inv_freq = self._compute_inv_freq(device=device)
|
| 234 |
+
else:
|
| 235 |
+
inv_freq = self.inv_freq
|
| 236 |
+
else:
|
| 237 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 238 |
+
inv_freq = self.inv_freq
|
| 239 |
+
|
| 240 |
+
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
| 241 |
+
freqs = torch.outer(t, inv_freq)
|
| 242 |
+
if self.scale is None:
|
| 243 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 244 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 245 |
+
else:
|
| 246 |
+
power = (
|
| 247 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
| 248 |
+
) / self.scale_base
|
| 249 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 250 |
+
|
| 251 |
+
# Force the scale multiplication to happen in fp32
|
| 252 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 253 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 254 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 255 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 256 |
+
|
| 257 |
+
def forward(
|
| 258 |
+
self,
|
| 259 |
+
qkv: torch.Tensor,
|
| 260 |
+
kv: Optional[torch.Tensor] = None,
|
| 261 |
+
seqlen_offset: int = 0,
|
| 262 |
+
**kwargs,
|
| 263 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 264 |
+
if (
|
| 265 |
+
self._seq_len_cached < qkv.shape[1] + seqlen_offset
|
| 266 |
+
or self._cos_cached.device != qkv.device
|
| 267 |
+
or self._cos_cached.dtype != qkv.dtype
|
| 268 |
+
or (self.training and self._cos_cached.is_inference())
|
| 269 |
+
):
|
| 270 |
+
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
| 271 |
+
|
| 272 |
+
if kv is None:
|
| 273 |
+
return _apply_rotary_emb_qkv(
|
| 274 |
+
qkv,
|
| 275 |
+
self._cos_cached[seqlen_offset:],
|
| 276 |
+
self._sin_cached[seqlen_offset:],
|
| 277 |
+
)
|
| 278 |
+
else:
|
| 279 |
+
q = _apply_rotary_emb(
|
| 280 |
+
qkv,
|
| 281 |
+
self._cos_cached[seqlen_offset:],
|
| 282 |
+
self._sin_cached[seqlen_offset:],
|
| 283 |
+
)
|
| 284 |
+
kv = _apply_rotary_emb_kv(
|
| 285 |
+
kv,
|
| 286 |
+
self._cos_cached[seqlen_offset:],
|
| 287 |
+
self._sin_cached[seqlen_offset:],
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
return q, kv
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class MLP(nn.Module):
|
| 294 |
+
"""Multi-Layer Perceptron.
|
| 295 |
+
|
| 296 |
+
Reference:
|
| 297 |
+
Attention Is All You Need.
|
| 298 |
+
https://arxiv.org/pdf/1706.03762.pdf.
|
| 299 |
+
|
| 300 |
+
"""
|
| 301 |
+
|
| 302 |
+
def __init__(
|
| 303 |
+
self,
|
| 304 |
+
config: PretrainedConfig,
|
| 305 |
+
n_inner: Optional[int] = None,
|
| 306 |
+
act_fn: Optional[str] = None,
|
| 307 |
+
) -> None:
|
| 308 |
+
super().__init__()
|
| 309 |
+
|
| 310 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
| 311 |
+
|
| 312 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
| 313 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
| 314 |
+
|
| 315 |
+
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
| 316 |
+
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
| 317 |
+
self.act = ACT2FN[act_fn]
|
| 318 |
+
|
| 319 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 320 |
+
hidden_states = self.fc1(hidden_states)
|
| 321 |
+
hidden_states = self.act(hidden_states)
|
| 322 |
+
hidden_states = self.fc2(hidden_states)
|
| 323 |
+
|
| 324 |
+
return hidden_states
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
class SelfAttention(nn.Module):
|
| 328 |
+
"""Self-attention layer (compatible with PyTorch).
|
| 329 |
+
|
| 330 |
+
Reference:
|
| 331 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
| 332 |
+
|
| 333 |
+
"""
|
| 334 |
+
|
| 335 |
+
def __init__(
|
| 336 |
+
self,
|
| 337 |
+
causal: bool = True,
|
| 338 |
+
softmax_scale: Optional[float] = None,
|
| 339 |
+
attention_dropout: float = 0.0,
|
| 340 |
+
) -> None:
|
| 341 |
+
super().__init__()
|
| 342 |
+
|
| 343 |
+
self.causal = causal
|
| 344 |
+
self.softmax_scale = softmax_scale
|
| 345 |
+
self.drop = nn.Dropout(attention_dropout)
|
| 346 |
+
|
| 347 |
+
@torch.autocast("cpu", enabled=False)
|
| 348 |
+
@torch.autocast("cuda", enabled=False)
|
| 349 |
+
def forward(
|
| 350 |
+
self,
|
| 351 |
+
qkv: torch.FloatTensor,
|
| 352 |
+
causal: bool = None,
|
| 353 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
| 354 |
+
**kwargs,
|
| 355 |
+
) -> torch.FloatTensor:
|
| 356 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 357 |
+
q, k, v = qkv.unbind(dim=2)
|
| 358 |
+
|
| 359 |
+
q = q.to(torch.float32)
|
| 360 |
+
k = k.to(torch.float32)
|
| 361 |
+
|
| 362 |
+
causal = self.causal if causal is None else causal
|
| 363 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 364 |
+
|
| 365 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
| 366 |
+
# using float16, which might lead to overflow
|
| 367 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 368 |
+
|
| 369 |
+
if key_padding_mask is not None:
|
| 370 |
+
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
|
| 371 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 372 |
+
|
| 373 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
| 374 |
+
|
| 375 |
+
if causal:
|
| 376 |
+
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
| 377 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 378 |
+
|
| 379 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
| 380 |
+
attention = self.drop(attention)
|
| 381 |
+
|
| 382 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
| 383 |
+
|
| 384 |
+
return output
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class CrossAttention(nn.Module):
|
| 388 |
+
"""Cross-attention layer (compatible with PyTorch).
|
| 389 |
+
|
| 390 |
+
Reference:
|
| 391 |
+
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
| 392 |
+
|
| 393 |
+
"""
|
| 394 |
+
|
| 395 |
+
def __init__(
|
| 396 |
+
self,
|
| 397 |
+
causal: bool = True,
|
| 398 |
+
softmax_scale: Optional[float] = None,
|
| 399 |
+
attention_dropout: float = 0.0,
|
| 400 |
+
) -> None:
|
| 401 |
+
super().__init__()
|
| 402 |
+
|
| 403 |
+
self.causal = causal
|
| 404 |
+
self.softmax_scale = softmax_scale
|
| 405 |
+
self.drop = nn.Dropout(attention_dropout)
|
| 406 |
+
|
| 407 |
+
@torch.autocast("cpu", enabled=False)
|
| 408 |
+
@torch.autocast("cuda", enabled=False)
|
| 409 |
+
def forward(
|
| 410 |
+
self,
|
| 411 |
+
q: torch.FloatTensor,
|
| 412 |
+
kv: torch.FloatTensor,
|
| 413 |
+
causal: bool = None,
|
| 414 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
| 415 |
+
**kwargs,
|
| 416 |
+
) -> torch.FloatTensor:
|
| 417 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 418 |
+
seqlen_k = kv.shape[1]
|
| 419 |
+
|
| 420 |
+
if kv.shape[3] != q.shape[2]:
|
| 421 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
| 422 |
+
k, v = kv.unbind(dim=2)
|
| 423 |
+
|
| 424 |
+
q = q.to(torch.float32)
|
| 425 |
+
k = k.to(torch.float32)
|
| 426 |
+
|
| 427 |
+
causal = self.causal if causal is None else causal
|
| 428 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 429 |
+
|
| 430 |
+
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
| 431 |
+
# using float16, which might lead to overflow
|
| 432 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
| 433 |
+
|
| 434 |
+
if key_padding_mask is not None:
|
| 435 |
+
padding_mask = torch.full(
|
| 436 |
+
(batch_size, seqlen_k),
|
| 437 |
+
-10000.0,
|
| 438 |
+
dtype=scores.dtype,
|
| 439 |
+
device=scores.device,
|
| 440 |
+
)
|
| 441 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 442 |
+
|
| 443 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
| 444 |
+
|
| 445 |
+
if causal:
|
| 446 |
+
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
|
| 447 |
+
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
| 448 |
+
causal_mask = cols > rows + seqlen_k - seqlen_q
|
| 449 |
+
|
| 450 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
| 451 |
+
|
| 452 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
| 453 |
+
attention = self.drop(attention)
|
| 454 |
+
|
| 455 |
+
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
| 456 |
+
|
| 457 |
+
return output
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
def _find_mha_dims(
|
| 461 |
+
config: PretrainedConfig,
|
| 462 |
+
n_head: Optional[int] = None,
|
| 463 |
+
n_head_kv: Optional[int] = None,
|
| 464 |
+
head_dim: Optional[int] = None,
|
| 465 |
+
) -> Tuple[int, int]:
|
| 466 |
+
if n_head is None and head_dim is None:
|
| 467 |
+
head_dim = config.n_embd // config.n_head
|
| 468 |
+
n_head = config.n_head
|
| 469 |
+
elif n_head is None or head_dim is None:
|
| 470 |
+
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
| 471 |
+
|
| 472 |
+
if n_head_kv is None:
|
| 473 |
+
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
| 474 |
+
|
| 475 |
+
return n_head, n_head_kv, head_dim
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
| 479 |
+
num_heads, head_dim = kv.shape[-2:]
|
| 480 |
+
|
| 481 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
| 482 |
+
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
|
| 483 |
+
inference_params.max_batch_size,
|
| 484 |
+
inference_params.max_seqlen,
|
| 485 |
+
2,
|
| 486 |
+
num_heads,
|
| 487 |
+
head_dim,
|
| 488 |
+
dtype=kv.dtype,
|
| 489 |
+
device=kv.device,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
batch_start = inference_params.batch_size_offset
|
| 493 |
+
batch_end = batch_start + kv.shape[0]
|
| 494 |
+
|
| 495 |
+
sequence_start = inference_params.seqlen_offset
|
| 496 |
+
sequence_end = sequence_start + kv.shape[1]
|
| 497 |
+
|
| 498 |
+
# When the current sequence length is equal to or larger than the maximum sequence length,
|
| 499 |
+
# we need to concatenate the current `kv` with the cached `kv` to expand its length
|
| 500 |
+
if sequence_end >= inference_params.max_seqlen:
|
| 501 |
+
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
|
| 502 |
+
|
| 503 |
+
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
| 504 |
+
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
|
| 505 |
+
|
| 506 |
+
return kv
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
class MHA(nn.Module):
|
| 510 |
+
"""Multi-head attention layer."""
|
| 511 |
+
|
| 512 |
+
def __init__(
|
| 513 |
+
self,
|
| 514 |
+
config: PretrainedConfig,
|
| 515 |
+
dtype: Optional[torch.dtype] = None,
|
| 516 |
+
device: Optional[str] = None,
|
| 517 |
+
rotary_dim: Optional[int] = None,
|
| 518 |
+
rotary_base: float = 10000.0,
|
| 519 |
+
rotary_scale_base: Optional[float] = None,
|
| 520 |
+
n_head: Optional[int] = None,
|
| 521 |
+
n_head_kv: Optional[int] = None,
|
| 522 |
+
head_dim: Optional[int] = None,
|
| 523 |
+
bias: bool = True,
|
| 524 |
+
causal: bool = True,
|
| 525 |
+
softmax_scale: Optional[float] = None,
|
| 526 |
+
layer_idx: Optional[int] = None,
|
| 527 |
+
return_residual: bool = False,
|
| 528 |
+
checkpointing: bool = False,
|
| 529 |
+
) -> None:
|
| 530 |
+
super().__init__()
|
| 531 |
+
|
| 532 |
+
# Rotary embedding
|
| 533 |
+
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
| 534 |
+
if self.rotary_dim > 0:
|
| 535 |
+
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
|
| 536 |
+
if rotary_cls is None:
|
| 537 |
+
rotary_cls = RotaryEmbedding
|
| 538 |
+
|
| 539 |
+
rotary_kwargs = {}
|
| 540 |
+
if rotary_cls is RotaryEmbedding:
|
| 541 |
+
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
| 542 |
+
|
| 543 |
+
self.rotary_emb = rotary_cls(
|
| 544 |
+
self.rotary_dim,
|
| 545 |
+
base=rotary_base,
|
| 546 |
+
scale_base=rotary_scale_base,
|
| 547 |
+
device=device,
|
| 548 |
+
**rotary_kwargs,
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
# MLP
|
| 552 |
+
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
| 553 |
+
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
|
| 554 |
+
)
|
| 555 |
+
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
| 556 |
+
hidden_size = config.n_embd
|
| 557 |
+
|
| 558 |
+
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
| 559 |
+
if linear_cls is None:
|
| 560 |
+
linear_cls = nn.Linear
|
| 561 |
+
|
| 562 |
+
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
|
| 563 |
+
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
| 564 |
+
|
| 565 |
+
# Attention
|
| 566 |
+
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
|
| 567 |
+
if attn_cls is None:
|
| 568 |
+
attn_cls = SelfAttention
|
| 569 |
+
|
| 570 |
+
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
|
| 571 |
+
if cross_attn_cls is None:
|
| 572 |
+
cross_attn_cls = CrossAttention
|
| 573 |
+
|
| 574 |
+
self.inner_attn = attn_cls(
|
| 575 |
+
causal=causal,
|
| 576 |
+
softmax_scale=softmax_scale,
|
| 577 |
+
attention_dropout=config.attn_pdrop,
|
| 578 |
+
)
|
| 579 |
+
self.inner_cross_attn = cross_attn_cls(
|
| 580 |
+
causal=causal,
|
| 581 |
+
softmax_scale=softmax_scale,
|
| 582 |
+
attention_dropout=config.attn_pdrop,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
| 586 |
+
self.layer_idx = layer_idx
|
| 587 |
+
self.return_residual = return_residual
|
| 588 |
+
self.checkpointing = checkpointing
|
| 589 |
+
|
| 590 |
+
def _forward_self_attn(
|
| 591 |
+
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
| 592 |
+
) -> torch.FloatTensor:
|
| 593 |
+
qkv = self.Wqkv(x)
|
| 594 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
| 595 |
+
|
| 596 |
+
if self.rotary_dim > 0:
|
| 597 |
+
qkv = self.rotary_emb(qkv)
|
| 598 |
+
|
| 599 |
+
if self.flash_attn:
|
| 600 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 601 |
+
|
| 602 |
+
cu_seqlens, max_seqlen = None, None
|
| 603 |
+
if key_padding_mask is not None:
|
| 604 |
+
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
|
| 605 |
+
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
|
| 606 |
+
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
|
| 607 |
+
|
| 608 |
+
if self.checkpointing:
|
| 609 |
+
attn_output = torch.utils.checkpoint.checkpoint(
|
| 610 |
+
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
| 611 |
+
)
|
| 612 |
+
else:
|
| 613 |
+
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
|
| 614 |
+
|
| 615 |
+
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
|
| 616 |
+
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
|
| 617 |
+
|
| 618 |
+
if self.checkpointing:
|
| 619 |
+
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
|
| 620 |
+
|
| 621 |
+
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
| 622 |
+
|
| 623 |
+
def _forward_cross_attn(
|
| 624 |
+
self,
|
| 625 |
+
x: torch.FloatTensor,
|
| 626 |
+
past_key_values: Optional[InferenceParams],
|
| 627 |
+
key_padding_mask: Optional[torch.BoolTensor],
|
| 628 |
+
) -> torch.FloatTensor:
|
| 629 |
+
batch_size = x.shape[0]
|
| 630 |
+
|
| 631 |
+
qkv = self.Wqkv(x)
|
| 632 |
+
|
| 633 |
+
q = qkv[..., : self.n_head * self.head_dim]
|
| 634 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
| 635 |
+
|
| 636 |
+
kv = qkv[..., self.n_head * self.head_dim :]
|
| 637 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
| 638 |
+
|
| 639 |
+
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
|
| 640 |
+
causal = None if seqlen_offset == 0 else False
|
| 641 |
+
if self.rotary_dim > 0:
|
| 642 |
+
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
| 643 |
+
|
| 644 |
+
if past_key_values is not None:
|
| 645 |
+
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
| 646 |
+
|
| 647 |
+
if self.flash_attn:
|
| 648 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 649 |
+
seqlen_k = kv.shape[1]
|
| 650 |
+
|
| 651 |
+
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
|
| 652 |
+
None,
|
| 653 |
+
None,
|
| 654 |
+
None,
|
| 655 |
+
None,
|
| 656 |
+
)
|
| 657 |
+
if key_padding_mask is not None:
|
| 658 |
+
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
| 659 |
+
|
| 660 |
+
if seqlen_q == 1:
|
| 661 |
+
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
|
| 662 |
+
elif seqlen_q != seqlen_k:
|
| 663 |
+
key_padding_mask = key_padding_mask[:, -seqlen_q:]
|
| 664 |
+
|
| 665 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
|
| 666 |
+
|
| 667 |
+
if self.checkpointing:
|
| 668 |
+
attn_output = torch.utils.checkpoint.checkpoint(
|
| 669 |
+
self.inner_cross_attn,
|
| 670 |
+
q,
|
| 671 |
+
kv,
|
| 672 |
+
causal=causal,
|
| 673 |
+
cu_seqlens=cu_seqlens_q,
|
| 674 |
+
max_seqlen=max_seqlen_q,
|
| 675 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 676 |
+
max_seqlen_k=max_seqlen_k,
|
| 677 |
+
)
|
| 678 |
+
else:
|
| 679 |
+
attn_output = self.inner_cross_attn(
|
| 680 |
+
q,
|
| 681 |
+
kv,
|
| 682 |
+
causal=causal,
|
| 683 |
+
cu_seqlens=cu_seqlens_q,
|
| 684 |
+
max_seqlen=max_seqlen_q,
|
| 685 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 686 |
+
max_seqlen_k=max_seqlen_k,
|
| 687 |
+
)
|
| 688 |
+
|
| 689 |
+
return (
|
| 690 |
+
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
|
| 691 |
+
if key_padding_mask is not None
|
| 692 |
+
else attn_output
|
| 693 |
+
)
|
| 694 |
+
|
| 695 |
+
if self.checkpointing:
|
| 696 |
+
return torch.utils.checkpoint.checkpoint(
|
| 697 |
+
self.inner_cross_attn,
|
| 698 |
+
q,
|
| 699 |
+
kv,
|
| 700 |
+
key_padding_mask=key_padding_mask,
|
| 701 |
+
causal=causal,
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|
| 705 |
+
|
| 706 |
+
def forward(
|
| 707 |
+
self,
|
| 708 |
+
x: torch.FloatTensor,
|
| 709 |
+
past_key_values: Optional[InferenceParams] = None,
|
| 710 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
| 711 |
+
**kwargs,
|
| 712 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 713 |
+
if attention_mask is not None:
|
| 714 |
+
attention_mask = attention_mask.bool()
|
| 715 |
+
else:
|
| 716 |
+
attention_mask = None
|
| 717 |
+
|
| 718 |
+
# MHA
|
| 719 |
+
if self.n_head == self.n_head_kv:
|
| 720 |
+
if past_key_values is None:
|
| 721 |
+
# If `past_key_values` are not supplied, we run self-attention
|
| 722 |
+
attn_output = self._forward_self_attn(x, attention_mask)
|
| 723 |
+
else:
|
| 724 |
+
# If `past_key_values` are supplied, it means that we might have cached values and
|
| 725 |
+
# could take advantage of cross-attention
|
| 726 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
| 727 |
+
# MQA / GQA
|
| 728 |
+
else:
|
| 729 |
+
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
| 730 |
+
# because `q` and `kv` lengths might be different
|
| 731 |
+
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
| 732 |
+
|
| 733 |
+
output = rearrange(attn_output, "... h d -> ... (h d)")
|
| 734 |
+
output = self.out_proj(output)
|
| 735 |
+
|
| 736 |
+
return output if not self.return_residual else (output, x)
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
class ParallelBlock(nn.Module):
|
| 740 |
+
"""Parallel block.
|
| 741 |
+
|
| 742 |
+
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
| 743 |
+
|
| 744 |
+
"""
|
| 745 |
+
|
| 746 |
+
def __init__(
|
| 747 |
+
self,
|
| 748 |
+
config: PretrainedConfig,
|
| 749 |
+
block_idx: Optional[int] = None,
|
| 750 |
+
) -> None:
|
| 751 |
+
super().__init__()
|
| 752 |
+
|
| 753 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 754 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 755 |
+
self.block_idx = block_idx
|
| 756 |
+
|
| 757 |
+
self.mixer = MHA(config, layer_idx=block_idx)
|
| 758 |
+
self.mlp = MLP(config)
|
| 759 |
+
|
| 760 |
+
def forward(
|
| 761 |
+
self,
|
| 762 |
+
hidden_states: torch.FloatTensor,
|
| 763 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 764 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 765 |
+
**kwargs,
|
| 766 |
+
) -> torch.FloatTensor:
|
| 767 |
+
residual = hidden_states
|
| 768 |
+
hidden_states = self.ln(hidden_states)
|
| 769 |
+
|
| 770 |
+
attn_outputs = self.mixer(
|
| 771 |
+
hidden_states,
|
| 772 |
+
past_key_values=past_key_values,
|
| 773 |
+
attention_mask=attention_mask,
|
| 774 |
+
)
|
| 775 |
+
if isinstance(attn_outputs, tuple):
|
| 776 |
+
attn_outputs = attn_outputs[0]
|
| 777 |
+
|
| 778 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
| 779 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
| 780 |
+
|
| 781 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
| 782 |
+
|
| 783 |
+
return hidden_states
|
| 784 |
+
|
| 785 |
+
|
| 786 |
+
class CausalLMHead(nn.Module):
|
| 787 |
+
"""Causal Language Modeling head.
|
| 788 |
+
|
| 789 |
+
Reference:
|
| 790 |
+
Improving Language Understanding by Generative Pre-Training.
|
| 791 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 792 |
+
|
| 793 |
+
"""
|
| 794 |
+
|
| 795 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
| 796 |
+
super().__init__()
|
| 797 |
+
|
| 798 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 799 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 800 |
+
|
| 801 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 802 |
+
hidden_states = self.ln(hidden_states)
|
| 803 |
+
logits = self.linear(hidden_states).to(torch.float32)
|
| 804 |
+
|
| 805 |
+
return logits
|
| 806 |
+
|
| 807 |
+
|
| 808 |
+
class CausalLMLoss(nn.Module):
|
| 809 |
+
"""Causal Language Modeling loss.
|
| 810 |
+
|
| 811 |
+
Reference:
|
| 812 |
+
Improving Language Understanding by Generative Pre-Training.
|
| 813 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 814 |
+
|
| 815 |
+
"""
|
| 816 |
+
|
| 817 |
+
def __init__(self, shift_labels: bool = True) -> None:
|
| 818 |
+
super().__init__()
|
| 819 |
+
|
| 820 |
+
self.shift_labels = shift_labels
|
| 821 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 822 |
+
|
| 823 |
+
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
| 824 |
+
if self.shift_labels:
|
| 825 |
+
logits = logits[..., :-1, :].contiguous()
|
| 826 |
+
labels = labels[..., 1:].contiguous()
|
| 827 |
+
|
| 828 |
+
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 829 |
+
|
| 830 |
+
return loss
|
| 831 |
+
|
| 832 |
+
|
| 833 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
| 834 |
+
"""Phi pre-trained model."""
|
| 835 |
+
|
| 836 |
+
config_class = PhiConfig
|
| 837 |
+
base_model_prefix = "transformer"
|
| 838 |
+
supports_gradient_checkpointing = False
|
| 839 |
+
_no_split_modules = ["ParallelBlock"]
|
| 840 |
+
|
| 841 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
| 842 |
+
super().__init__(*inputs, **kwargs)
|
| 843 |
+
|
| 844 |
+
def _init_weights(self, module: nn.Module) -> None:
|
| 845 |
+
if isinstance(module, (nn.Linear,)):
|
| 846 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 847 |
+
if module.bias is not None:
|
| 848 |
+
module.bias.data.zero_()
|
| 849 |
+
elif isinstance(module, nn.Embedding):
|
| 850 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 851 |
+
if module.padding_idx is not None:
|
| 852 |
+
module.weight.data[module.padding_idx].zero_()
|
| 853 |
+
elif isinstance(module, nn.LayerNorm):
|
| 854 |
+
if module.bias is not None:
|
| 855 |
+
module.bias.data.zero_()
|
| 856 |
+
module.weight.data.fill_(1.0)
|
| 857 |
+
|
| 858 |
+
def prepare_inputs_for_generation(
|
| 859 |
+
self,
|
| 860 |
+
input_ids: torch.LongTensor,
|
| 861 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 862 |
+
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
| 863 |
+
**kwargs,
|
| 864 |
+
) -> Dict[str, Any]:
|
| 865 |
+
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
| 866 |
+
past_key_values = InferenceParams(
|
| 867 |
+
max_seqlen=self.config.n_positions,
|
| 868 |
+
max_batch_size=input_ids.shape[0],
|
| 869 |
+
seqlen_offset=0,
|
| 870 |
+
batch_size_offset=0,
|
| 871 |
+
key_value_memory_dict={},
|
| 872 |
+
lengths_per_sample=None,
|
| 873 |
+
)
|
| 874 |
+
else:
|
| 875 |
+
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
| 876 |
+
past_key_values.seqlen_offset = input_ids.shape[1] - 1
|
| 877 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 878 |
+
|
| 879 |
+
return {
|
| 880 |
+
"input_ids": input_ids,
|
| 881 |
+
"past_key_values": past_key_values,
|
| 882 |
+
"attention_mask": attention_mask,
|
| 883 |
+
}
|
| 884 |
+
|
| 885 |
+
|
| 886 |
+
class PhiModel(PhiPreTrainedModel):
|
| 887 |
+
"""Phi model."""
|
| 888 |
+
|
| 889 |
+
_keys_to_ignore_on_load_missing = [""]
|
| 890 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
| 891 |
+
|
| 892 |
+
def __init__(self, config: PhiConfig) -> None:
|
| 893 |
+
super().__init__(config)
|
| 894 |
+
|
| 895 |
+
self.embd = Embedding(config)
|
| 896 |
+
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
|
| 897 |
+
self.gradient_checkpointing = False
|
| 898 |
+
self.post_init()
|
| 899 |
+
|
| 900 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
| 901 |
+
return self.embd.wte
|
| 902 |
+
|
| 903 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
| 904 |
+
self.embd.wte = new_embeddings
|
| 905 |
+
|
| 906 |
+
def forward(
|
| 907 |
+
self,
|
| 908 |
+
input_ids: torch.LongTensor,
|
| 909 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 910 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 911 |
+
) -> torch.FloatTensor:
|
| 912 |
+
hidden_states = self.embd(input_ids)
|
| 913 |
+
|
| 914 |
+
for layer in self.h:
|
| 915 |
+
hidden_states = layer(
|
| 916 |
+
hidden_states,
|
| 917 |
+
past_key_values=past_key_values,
|
| 918 |
+
attention_mask=attention_mask,
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
return hidden_states
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
class PhiForCausalLM(PhiPreTrainedModel):
|
| 925 |
+
"""Phi for Causal Language Modeling."""
|
| 926 |
+
|
| 927 |
+
_keys_to_ignore_on_load_missing = [""]
|
| 928 |
+
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
| 929 |
+
|
| 930 |
+
def __init__(self, config: PhiConfig) -> None:
|
| 931 |
+
super().__init__(config)
|
| 932 |
+
|
| 933 |
+
self.transformer = PhiModel(config)
|
| 934 |
+
self.lm_head = CausalLMHead(config)
|
| 935 |
+
self.loss = CausalLMLoss()
|
| 936 |
+
|
| 937 |
+
self.post_init()
|
| 938 |
+
|
| 939 |
+
def get_output_embeddings(self) -> nn.Linear:
|
| 940 |
+
return self.lm_head.linear
|
| 941 |
+
|
| 942 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
| 943 |
+
self.lm_head.linear = new_embeddings
|
| 944 |
+
|
| 945 |
+
def forward(
|
| 946 |
+
self,
|
| 947 |
+
input_ids: torch.LongTensor,
|
| 948 |
+
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
| 949 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 950 |
+
labels: Optional[torch.LongTensor] = None,
|
| 951 |
+
**kwargs,
|
| 952 |
+
) -> CausalLMOutputWithPast:
|
| 953 |
+
hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask)
|
| 954 |
+
lm_logits = self.lm_head(hidden_states)
|
| 955 |
+
|
| 956 |
+
loss = None
|
| 957 |
+
if labels is not None:
|
| 958 |
+
loss = self.loss(lm_logits, labels)
|
| 959 |
+
|
| 960 |
+
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|