File size: 3,164 Bytes
a7758bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: peft
license: other
base_model: deepseek-ai/deepseek-coder-1.3b-base
tags:
- generated_from_trainer
model-index:
- name: lemexp-processed-task1_min_symbols_lemma_command_small-deepseek-coder-1.3b-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lemexp-processed-task1_min_symbols_lemma_command_small-deepseek-coder-1.3b-base
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-base](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 0.6364 | 0.2000 | 3683 | 0.6357 |
| 0.5857 | 0.4001 | 7366 | 0.5827 |
| 0.5682 | 0.6001 | 11049 | 0.5516 |
| 0.5421 | 0.8001 | 14732 | 0.5293 |
| 0.5142 | 1.0002 | 18415 | 0.5177 |
| 0.4674 | 1.2002 | 22098 | 0.5015 |
| 0.4615 | 1.4002 | 25781 | 0.5000 |
| 0.453 | 1.6003 | 29464 | 0.4770 |
| 0.4506 | 1.8003 | 33147 | 0.4701 |
| 0.4309 | 2.0003 | 36830 | 0.4646 |
| 0.3829 | 2.2004 | 40513 | 0.4667 |
| 0.3925 | 2.4004 | 44196 | 0.4595 |
| 0.3858 | 2.6004 | 47879 | 0.4566 |
| 0.3879 | 2.8005 | 51562 | 0.4439 |
| 0.3764 | 3.0005 | 55245 | 0.4379 |
| 0.3267 | 3.2005 | 58928 | 0.4502 |
| 0.3346 | 3.4006 | 62611 | 0.4443 |
| 0.3363 | 3.6006 | 66294 | 0.4339 |
| 0.3321 | 3.8006 | 69977 | 0.4350 |
| 0.3423 | 4.0007 | 73660 | 0.4288 |
| 0.2789 | 4.2007 | 77343 | 0.4458 |
| 0.2928 | 4.4007 | 81026 | 0.4379 |
| 0.2963 | 4.6007 | 84709 | 0.4325 |
| 0.2887 | 4.8008 | 88392 | 0.4275 |
| 0.2949 | 5.0008 | 92075 | 0.4292 |
| 0.2437 | 5.2008 | 95758 | 0.4366 |
| 0.2424 | 5.4009 | 99441 | 0.4358 |
| 0.2528 | 5.6009 | 103124 | 0.4331 |
| 0.2477 | 5.8009 | 106807 | 0.4329 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |