yalhessi commited on
Commit
db9dbf6
·
verified ·
1 Parent(s): 176ebaf

Training in progress, epoch 9, checkpoint

Browse files
checkpoint-32391/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-6.7b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-32391/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-6.7b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "v_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-32391/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2947462f551402f6c524aff34e2903fc37de1ccc53c6dc4318dd885af9a5cc91
3
+ size 541459256
checkpoint-32391/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d39f27602f4fbfc5ab748e49745072893b30e6a5c974d9be7d622b0574051f50
3
+ size 33662074
checkpoint-32391/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ccc10f724be38240d3f94f0d9d254a98b2d8018ee89e1cf995f323af372041a
3
+ size 15024
checkpoint-32391/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9a0fe74f9515a7071cf9efedad04d23098ea6521119fe7ae755ea0dceee802
3
+ size 15024
checkpoint-32391/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33bf17125afbe7cfbdade29669a7dc68b6e5c21c43082e3d35ade740b692db5b
3
+ size 15024
checkpoint-32391/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2e59d43374dfc728b281ca66655d1f6811731c5ff935e4e976d891a337b6d9c
3
+ size 15024
checkpoint-32391/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c292156116e9deaf3157f793714b76d77d0bbae6d6578d153076864d4be18b
3
+ size 1064
checkpoint-32391/trainer_state.json ADDED
@@ -0,0 +1,833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 9.0,
5
+ "eval_steps": 720,
6
+ "global_step": 32391,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13892747985551543,
13
+ "grad_norm": 0.5752785205841064,
14
+ "learning_rate": 0.00039538760766879693,
15
+ "loss": 0.2947,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.2000555709919422,
20
+ "eval_loss": 0.19290830194950104,
21
+ "eval_runtime": 6.2591,
22
+ "eval_samples_per_second": 79.884,
23
+ "eval_steps_per_second": 10.065,
24
+ "step": 720
25
+ },
26
+ {
27
+ "epoch": 0.27785495971103086,
28
+ "grad_norm": 0.4608103632926941,
29
+ "learning_rate": 0.00039075669167361305,
30
+ "loss": 0.1972,
31
+ "step": 1000
32
+ },
33
+ {
34
+ "epoch": 0.4001111419838844,
35
+ "eval_loss": 0.17835241556167603,
36
+ "eval_runtime": 6.2534,
37
+ "eval_samples_per_second": 79.957,
38
+ "eval_steps_per_second": 10.075,
39
+ "step": 1440
40
+ },
41
+ {
42
+ "epoch": 0.41678243956654626,
43
+ "grad_norm": 0.44341567158699036,
44
+ "learning_rate": 0.0003861257756784292,
45
+ "loss": 0.1817,
46
+ "step": 1500
47
+ },
48
+ {
49
+ "epoch": 0.5557099194220617,
50
+ "grad_norm": 0.3840184509754181,
51
+ "learning_rate": 0.00038149485968324534,
52
+ "loss": 0.1679,
53
+ "step": 2000
54
+ },
55
+ {
56
+ "epoch": 0.6001667129758266,
57
+ "eval_loss": 0.16081829369068146,
58
+ "eval_runtime": 6.259,
59
+ "eval_samples_per_second": 79.885,
60
+ "eval_steps_per_second": 10.065,
61
+ "step": 2160
62
+ },
63
+ {
64
+ "epoch": 0.6946373992775771,
65
+ "grad_norm": 0.4211641848087311,
66
+ "learning_rate": 0.0003768639436880615,
67
+ "loss": 0.1584,
68
+ "step": 2500
69
+ },
70
+ {
71
+ "epoch": 0.8002222839677688,
72
+ "eval_loss": 0.15788592398166656,
73
+ "eval_runtime": 6.2616,
74
+ "eval_samples_per_second": 79.852,
75
+ "eval_steps_per_second": 10.061,
76
+ "step": 2880
77
+ },
78
+ {
79
+ "epoch": 0.8335648791330925,
80
+ "grad_norm": 0.3697059750556946,
81
+ "learning_rate": 0.0003722515513568584,
82
+ "loss": 0.1501,
83
+ "step": 3000
84
+ },
85
+ {
86
+ "epoch": 0.972492358988608,
87
+ "grad_norm": 0.420885294675827,
88
+ "learning_rate": 0.00036762063536167455,
89
+ "loss": 0.1478,
90
+ "step": 3500
91
+ },
92
+ {
93
+ "epoch": 1.000277854959711,
94
+ "eval_loss": 0.14726293087005615,
95
+ "eval_runtime": 6.3796,
96
+ "eval_samples_per_second": 78.375,
97
+ "eval_steps_per_second": 9.875,
98
+ "step": 3600
99
+ },
100
+ {
101
+ "epoch": 1.1114198388441234,
102
+ "grad_norm": 0.3687162697315216,
103
+ "learning_rate": 0.0003629897193664907,
104
+ "loss": 0.1315,
105
+ "step": 4000
106
+ },
107
+ {
108
+ "epoch": 1.2003334259516532,
109
+ "eval_loss": 0.14390353858470917,
110
+ "eval_runtime": 6.2741,
111
+ "eval_samples_per_second": 79.693,
112
+ "eval_steps_per_second": 10.041,
113
+ "step": 4320
114
+ },
115
+ {
116
+ "epoch": 1.2503473186996388,
117
+ "grad_norm": 0.4367423951625824,
118
+ "learning_rate": 0.0003583588033713069,
119
+ "loss": 0.1309,
120
+ "step": 4500
121
+ },
122
+ {
123
+ "epoch": 1.3892747985551543,
124
+ "grad_norm": 0.40452277660369873,
125
+ "learning_rate": 0.000353727887376123,
126
+ "loss": 0.128,
127
+ "step": 5000
128
+ },
129
+ {
130
+ "epoch": 1.4003889969435954,
131
+ "eval_loss": 0.1357639729976654,
132
+ "eval_runtime": 6.2739,
133
+ "eval_samples_per_second": 79.695,
134
+ "eval_steps_per_second": 10.042,
135
+ "step": 5040
136
+ },
137
+ {
138
+ "epoch": 1.5282022784106695,
139
+ "grad_norm": 0.6852627396583557,
140
+ "learning_rate": 0.00034909697138093914,
141
+ "loss": 0.126,
142
+ "step": 5500
143
+ },
144
+ {
145
+ "epoch": 1.6004445679355377,
146
+ "eval_loss": 0.13292476534843445,
147
+ "eval_runtime": 6.2659,
148
+ "eval_samples_per_second": 79.797,
149
+ "eval_steps_per_second": 10.054,
150
+ "step": 5760
151
+ },
152
+ {
153
+ "epoch": 1.667129758266185,
154
+ "grad_norm": 0.30270153284072876,
155
+ "learning_rate": 0.0003444660553857553,
156
+ "loss": 0.1255,
157
+ "step": 6000
158
+ },
159
+ {
160
+ "epoch": 1.8005001389274797,
161
+ "eval_loss": 0.13217522203922272,
162
+ "eval_runtime": 6.2758,
163
+ "eval_samples_per_second": 79.671,
164
+ "eval_steps_per_second": 10.038,
165
+ "step": 6480
166
+ },
167
+ {
168
+ "epoch": 1.8060572381217006,
169
+ "grad_norm": 0.394003301858902,
170
+ "learning_rate": 0.0003398351393905715,
171
+ "loss": 0.1214,
172
+ "step": 6500
173
+ },
174
+ {
175
+ "epoch": 1.9449847179772157,
176
+ "grad_norm": 0.48431047797203064,
177
+ "learning_rate": 0.00033520422339538766,
178
+ "loss": 0.1199,
179
+ "step": 7000
180
+ },
181
+ {
182
+ "epoch": 2.000555709919422,
183
+ "eval_loss": 0.1269044131040573,
184
+ "eval_runtime": 6.422,
185
+ "eval_samples_per_second": 77.857,
186
+ "eval_steps_per_second": 9.81,
187
+ "step": 7200
188
+ },
189
+ {
190
+ "epoch": 2.0839121978327313,
191
+ "grad_norm": 0.35144302248954773,
192
+ "learning_rate": 0.0003305733074002038,
193
+ "loss": 0.108,
194
+ "step": 7500
195
+ },
196
+ {
197
+ "epoch": 2.2006112809113643,
198
+ "eval_loss": 0.12548324465751648,
199
+ "eval_runtime": 6.2942,
200
+ "eval_samples_per_second": 79.438,
201
+ "eval_steps_per_second": 10.009,
202
+ "step": 7920
203
+ },
204
+ {
205
+ "epoch": 2.222839677688247,
206
+ "grad_norm": 0.5099118947982788,
207
+ "learning_rate": 0.00032595165323701027,
208
+ "loss": 0.1056,
209
+ "step": 8000
210
+ },
211
+ {
212
+ "epoch": 2.361767157543762,
213
+ "grad_norm": 0.5797615647315979,
214
+ "learning_rate": 0.00032132073724182645,
215
+ "loss": 0.1047,
216
+ "step": 8500
217
+ },
218
+ {
219
+ "epoch": 2.4006668519033063,
220
+ "eval_loss": 0.12244148552417755,
221
+ "eval_runtime": 6.2902,
222
+ "eval_samples_per_second": 79.489,
223
+ "eval_steps_per_second": 10.016,
224
+ "step": 8640
225
+ },
226
+ {
227
+ "epoch": 2.5006946373992776,
228
+ "grad_norm": 0.40433964133262634,
229
+ "learning_rate": 0.0003166898212466426,
230
+ "loss": 0.1038,
231
+ "step": 9000
232
+ },
233
+ {
234
+ "epoch": 2.600722422895249,
235
+ "eval_loss": 0.12048304080963135,
236
+ "eval_runtime": 6.289,
237
+ "eval_samples_per_second": 79.503,
238
+ "eval_steps_per_second": 10.017,
239
+ "step": 9360
240
+ },
241
+ {
242
+ "epoch": 2.639622117254793,
243
+ "grad_norm": 0.7869251370429993,
244
+ "learning_rate": 0.00031205890525145874,
245
+ "loss": 0.1023,
246
+ "step": 9500
247
+ },
248
+ {
249
+ "epoch": 2.7785495971103087,
250
+ "grad_norm": 0.34468919038772583,
251
+ "learning_rate": 0.0003074279892562749,
252
+ "loss": 0.1043,
253
+ "step": 10000
254
+ },
255
+ {
256
+ "epoch": 2.800777993887191,
257
+ "eval_loss": 0.1157899871468544,
258
+ "eval_runtime": 6.2874,
259
+ "eval_samples_per_second": 79.524,
260
+ "eval_steps_per_second": 10.02,
261
+ "step": 10080
262
+ },
263
+ {
264
+ "epoch": 2.917477076965824,
265
+ "grad_norm": 0.5141274929046631,
266
+ "learning_rate": 0.00030279707326109104,
267
+ "loss": 0.1042,
268
+ "step": 10500
269
+ },
270
+ {
271
+ "epoch": 3.000833564879133,
272
+ "eval_loss": 0.11479081958532333,
273
+ "eval_runtime": 6.4111,
274
+ "eval_samples_per_second": 77.99,
275
+ "eval_steps_per_second": 9.827,
276
+ "step": 10800
277
+ },
278
+ {
279
+ "epoch": 3.0564045568213394,
280
+ "grad_norm": 0.4209577143192291,
281
+ "learning_rate": 0.0002981754190978976,
282
+ "loss": 0.0957,
283
+ "step": 11000
284
+ },
285
+ {
286
+ "epoch": 3.1953320366768545,
287
+ "grad_norm": 0.4159316122531891,
288
+ "learning_rate": 0.00029355376493470407,
289
+ "loss": 0.0884,
290
+ "step": 11500
291
+ },
292
+ {
293
+ "epoch": 3.2008891358710754,
294
+ "eval_loss": 0.11302317678928375,
295
+ "eval_runtime": 6.2864,
296
+ "eval_samples_per_second": 79.537,
297
+ "eval_steps_per_second": 10.022,
298
+ "step": 11520
299
+ },
300
+ {
301
+ "epoch": 3.33425951653237,
302
+ "grad_norm": 0.613624632358551,
303
+ "learning_rate": 0.00028892284893952024,
304
+ "loss": 0.0903,
305
+ "step": 12000
306
+ },
307
+ {
308
+ "epoch": 3.4009447068630174,
309
+ "eval_loss": 0.11040342599153519,
310
+ "eval_runtime": 6.2939,
311
+ "eval_samples_per_second": 79.442,
312
+ "eval_steps_per_second": 10.01,
313
+ "step": 12240
314
+ },
315
+ {
316
+ "epoch": 3.4731869963878856,
317
+ "grad_norm": 0.7177799940109253,
318
+ "learning_rate": 0.0002842919329443364,
319
+ "loss": 0.0889,
320
+ "step": 12500
321
+ },
322
+ {
323
+ "epoch": 3.6010002778549595,
324
+ "eval_loss": 0.11320961266756058,
325
+ "eval_runtime": 6.2914,
326
+ "eval_samples_per_second": 79.473,
327
+ "eval_steps_per_second": 10.014,
328
+ "step": 12960
329
+ },
330
+ {
331
+ "epoch": 3.612114476243401,
332
+ "grad_norm": 0.5415129065513611,
333
+ "learning_rate": 0.0002796610169491526,
334
+ "loss": 0.0889,
335
+ "step": 13000
336
+ },
337
+ {
338
+ "epoch": 3.7510419560989163,
339
+ "grad_norm": 0.6058521866798401,
340
+ "learning_rate": 0.0002750301009539687,
341
+ "loss": 0.0885,
342
+ "step": 13500
343
+ },
344
+ {
345
+ "epoch": 3.801055848846902,
346
+ "eval_loss": 0.11218452453613281,
347
+ "eval_runtime": 6.2932,
348
+ "eval_samples_per_second": 79.45,
349
+ "eval_steps_per_second": 10.011,
350
+ "step": 13680
351
+ },
352
+ {
353
+ "epoch": 3.889969435954432,
354
+ "grad_norm": 0.6304852366447449,
355
+ "learning_rate": 0.00027039918495878483,
356
+ "loss": 0.0882,
357
+ "step": 14000
358
+ },
359
+ {
360
+ "epoch": 4.001111419838844,
361
+ "eval_loss": 0.1118089109659195,
362
+ "eval_runtime": 6.4064,
363
+ "eval_samples_per_second": 78.047,
364
+ "eval_steps_per_second": 9.834,
365
+ "step": 14400
366
+ },
367
+ {
368
+ "epoch": 4.0288969158099475,
369
+ "grad_norm": 0.46223384141921997,
370
+ "learning_rate": 0.000265768268963601,
371
+ "loss": 0.0858,
372
+ "step": 14500
373
+ },
374
+ {
375
+ "epoch": 4.167824395665463,
376
+ "grad_norm": 0.4947393238544464,
377
+ "learning_rate": 0.0002611373529684172,
378
+ "loss": 0.0753,
379
+ "step": 15000
380
+ },
381
+ {
382
+ "epoch": 4.201166990830786,
383
+ "eval_loss": 0.11774840950965881,
384
+ "eval_runtime": 6.2977,
385
+ "eval_samples_per_second": 79.394,
386
+ "eval_steps_per_second": 10.004,
387
+ "step": 15120
388
+ },
389
+ {
390
+ "epoch": 4.306751875520978,
391
+ "grad_norm": 0.40220069885253906,
392
+ "learning_rate": 0.00025650643697323335,
393
+ "loss": 0.0764,
394
+ "step": 15500
395
+ },
396
+ {
397
+ "epoch": 4.4012225618227285,
398
+ "eval_loss": 0.11307726055383682,
399
+ "eval_runtime": 6.301,
400
+ "eval_samples_per_second": 79.353,
401
+ "eval_steps_per_second": 9.998,
402
+ "step": 15840
403
+ },
404
+ {
405
+ "epoch": 4.445679355376494,
406
+ "grad_norm": 0.38409939408302307,
407
+ "learning_rate": 0.00025188478281003984,
408
+ "loss": 0.0779,
409
+ "step": 16000
410
+ },
411
+ {
412
+ "epoch": 4.584606835232009,
413
+ "grad_norm": 0.4317833185195923,
414
+ "learning_rate": 0.00024725386681485596,
415
+ "loss": 0.0755,
416
+ "step": 16500
417
+ },
418
+ {
419
+ "epoch": 4.601278132814671,
420
+ "eval_loss": 0.11036152392625809,
421
+ "eval_runtime": 6.3093,
422
+ "eval_samples_per_second": 79.248,
423
+ "eval_steps_per_second": 9.985,
424
+ "step": 16560
425
+ },
426
+ {
427
+ "epoch": 4.723534315087524,
428
+ "grad_norm": 0.5405837297439575,
429
+ "learning_rate": 0.00024262295081967214,
430
+ "loss": 0.077,
431
+ "step": 17000
432
+ },
433
+ {
434
+ "epoch": 4.801333703806613,
435
+ "eval_loss": 0.10895710438489914,
436
+ "eval_runtime": 6.3035,
437
+ "eval_samples_per_second": 79.321,
438
+ "eval_steps_per_second": 9.994,
439
+ "step": 17280
440
+ },
441
+ {
442
+ "epoch": 4.86246179494304,
443
+ "grad_norm": 0.3864780366420746,
444
+ "learning_rate": 0.0002379920348244883,
445
+ "loss": 0.0779,
446
+ "step": 17500
447
+ },
448
+ {
449
+ "epoch": 5.001389274798555,
450
+ "grad_norm": 0.3517213761806488,
451
+ "learning_rate": 0.0002333703806612948,
452
+ "loss": 0.0745,
453
+ "step": 18000
454
+ },
455
+ {
456
+ "epoch": 5.001389274798555,
457
+ "eval_loss": 0.10910706967115402,
458
+ "eval_runtime": 6.5025,
459
+ "eval_samples_per_second": 76.894,
460
+ "eval_steps_per_second": 9.689,
461
+ "step": 18000
462
+ },
463
+ {
464
+ "epoch": 5.14031675465407,
465
+ "grad_norm": 0.3627057671546936,
466
+ "learning_rate": 0.00022873946466611095,
467
+ "loss": 0.0641,
468
+ "step": 18500
469
+ },
470
+ {
471
+ "epoch": 5.201444845790498,
472
+ "eval_loss": 0.11183220893144608,
473
+ "eval_runtime": 6.3062,
474
+ "eval_samples_per_second": 79.287,
475
+ "eval_steps_per_second": 9.99,
476
+ "step": 18720
477
+ },
478
+ {
479
+ "epoch": 5.279244234509586,
480
+ "grad_norm": 0.4831227958202362,
481
+ "learning_rate": 0.00022410854867092712,
482
+ "loss": 0.0648,
483
+ "step": 19000
484
+ },
485
+ {
486
+ "epoch": 5.401500416782439,
487
+ "eval_loss": 0.10868020355701447,
488
+ "eval_runtime": 6.3155,
489
+ "eval_samples_per_second": 79.17,
490
+ "eval_steps_per_second": 9.975,
491
+ "step": 19440
492
+ },
493
+ {
494
+ "epoch": 5.418171714365101,
495
+ "grad_norm": 0.43644019961357117,
496
+ "learning_rate": 0.0002194776326757433,
497
+ "loss": 0.066,
498
+ "step": 19500
499
+ },
500
+ {
501
+ "epoch": 5.5570991942206165,
502
+ "grad_norm": 0.4624837338924408,
503
+ "learning_rate": 0.00021484671668055944,
504
+ "loss": 0.0661,
505
+ "step": 20000
506
+ },
507
+ {
508
+ "epoch": 5.601555987774382,
509
+ "eval_loss": 0.10925421118736267,
510
+ "eval_runtime": 6.3162,
511
+ "eval_samples_per_second": 79.161,
512
+ "eval_steps_per_second": 9.974,
513
+ "step": 20160
514
+ },
515
+ {
516
+ "epoch": 5.6960266740761325,
517
+ "grad_norm": 0.5039137601852417,
518
+ "learning_rate": 0.00021022506251736593,
519
+ "loss": 0.0666,
520
+ "step": 20500
521
+ },
522
+ {
523
+ "epoch": 5.801611558766324,
524
+ "eval_loss": 0.10597137361764908,
525
+ "eval_runtime": 6.3038,
526
+ "eval_samples_per_second": 79.317,
527
+ "eval_steps_per_second": 9.994,
528
+ "step": 20880
529
+ },
530
+ {
531
+ "epoch": 5.834954153931648,
532
+ "grad_norm": 0.4911608397960663,
533
+ "learning_rate": 0.0002055941465221821,
534
+ "loss": 0.0671,
535
+ "step": 21000
536
+ },
537
+ {
538
+ "epoch": 5.973881633787163,
539
+ "grad_norm": 0.648589015007019,
540
+ "learning_rate": 0.00020096323052699825,
541
+ "loss": 0.065,
542
+ "step": 21500
543
+ },
544
+ {
545
+ "epoch": 6.001667129758266,
546
+ "eval_loss": 0.10192042589187622,
547
+ "eval_runtime": 6.5803,
548
+ "eval_samples_per_second": 75.985,
549
+ "eval_steps_per_second": 9.574,
550
+ "step": 21600
551
+ },
552
+ {
553
+ "epoch": 6.112809113642679,
554
+ "grad_norm": 0.4207409918308258,
555
+ "learning_rate": 0.0001963323145318144,
556
+ "loss": 0.0565,
557
+ "step": 22000
558
+ },
559
+ {
560
+ "epoch": 6.201722700750208,
561
+ "eval_loss": 0.11030665040016174,
562
+ "eval_runtime": 6.3184,
563
+ "eval_samples_per_second": 79.133,
564
+ "eval_steps_per_second": 9.971,
565
+ "step": 22320
566
+ },
567
+ {
568
+ "epoch": 6.251736593498194,
569
+ "grad_norm": 0.5802621245384216,
570
+ "learning_rate": 0.00019170139853663055,
571
+ "loss": 0.0554,
572
+ "step": 22500
573
+ },
574
+ {
575
+ "epoch": 6.390664073353709,
576
+ "grad_norm": 0.56964111328125,
577
+ "learning_rate": 0.0001870704825414467,
578
+ "loss": 0.0575,
579
+ "step": 23000
580
+ },
581
+ {
582
+ "epoch": 6.401778271742151,
583
+ "eval_loss": 0.10719279199838638,
584
+ "eval_runtime": 6.3115,
585
+ "eval_samples_per_second": 79.22,
586
+ "eval_steps_per_second": 9.982,
587
+ "step": 23040
588
+ },
589
+ {
590
+ "epoch": 6.529591553209225,
591
+ "grad_norm": 0.5339217185974121,
592
+ "learning_rate": 0.00018243956654626287,
593
+ "loss": 0.057,
594
+ "step": 23500
595
+ },
596
+ {
597
+ "epoch": 6.601833842734093,
598
+ "eval_loss": 0.110511913895607,
599
+ "eval_runtime": 6.3148,
600
+ "eval_samples_per_second": 79.179,
601
+ "eval_steps_per_second": 9.977,
602
+ "step": 23760
603
+ },
604
+ {
605
+ "epoch": 6.66851903306474,
606
+ "grad_norm": 0.6509028673171997,
607
+ "learning_rate": 0.000177808650551079,
608
+ "loss": 0.057,
609
+ "step": 24000
610
+ },
611
+ {
612
+ "epoch": 6.801889413726035,
613
+ "eval_loss": 0.11028529703617096,
614
+ "eval_runtime": 6.2947,
615
+ "eval_samples_per_second": 79.432,
616
+ "eval_steps_per_second": 10.008,
617
+ "step": 24480
618
+ },
619
+ {
620
+ "epoch": 6.807446512920255,
621
+ "grad_norm": 0.4752148389816284,
622
+ "learning_rate": 0.00017318699638788553,
623
+ "loss": 0.0564,
624
+ "step": 24500
625
+ },
626
+ {
627
+ "epoch": 6.946373992775771,
628
+ "grad_norm": 0.38218364119529724,
629
+ "learning_rate": 0.00016856534222469205,
630
+ "loss": 0.0566,
631
+ "step": 25000
632
+ },
633
+ {
634
+ "epoch": 7.001944984717977,
635
+ "eval_loss": 0.1053631454706192,
636
+ "eval_runtime": 6.5447,
637
+ "eval_samples_per_second": 76.398,
638
+ "eval_steps_per_second": 9.626,
639
+ "step": 25200
640
+ },
641
+ {
642
+ "epoch": 7.085301472631286,
643
+ "grad_norm": 0.3690716028213501,
644
+ "learning_rate": 0.0001639344262295082,
645
+ "loss": 0.049,
646
+ "step": 25500
647
+ },
648
+ {
649
+ "epoch": 7.20200055570992,
650
+ "eval_loss": 0.11346188932657242,
651
+ "eval_runtime": 6.3148,
652
+ "eval_samples_per_second": 79.179,
653
+ "eval_steps_per_second": 9.977,
654
+ "step": 25920
655
+ },
656
+ {
657
+ "epoch": 7.2242289524868015,
658
+ "grad_norm": 0.6985990405082703,
659
+ "learning_rate": 0.00015930351023432434,
660
+ "loss": 0.0471,
661
+ "step": 26000
662
+ },
663
+ {
664
+ "epoch": 7.3631564323423175,
665
+ "grad_norm": 0.4522312581539154,
666
+ "learning_rate": 0.00015467259423914052,
667
+ "loss": 0.0471,
668
+ "step": 26500
669
+ },
670
+ {
671
+ "epoch": 7.402056126701861,
672
+ "eval_loss": 0.11016041040420532,
673
+ "eval_runtime": 6.3157,
674
+ "eval_samples_per_second": 79.168,
675
+ "eval_steps_per_second": 9.975,
676
+ "step": 26640
677
+ },
678
+ {
679
+ "epoch": 7.502083912197833,
680
+ "grad_norm": 0.3933652341365814,
681
+ "learning_rate": 0.00015004167824395664,
682
+ "loss": 0.0481,
683
+ "step": 27000
684
+ },
685
+ {
686
+ "epoch": 7.602111697693804,
687
+ "eval_loss": 0.11197081953287125,
688
+ "eval_runtime": 6.3099,
689
+ "eval_samples_per_second": 79.24,
690
+ "eval_steps_per_second": 9.984,
691
+ "step": 27360
692
+ },
693
+ {
694
+ "epoch": 7.641011392053348,
695
+ "grad_norm": 0.42119812965393066,
696
+ "learning_rate": 0.00014542002408076318,
697
+ "loss": 0.0484,
698
+ "step": 27500
699
+ },
700
+ {
701
+ "epoch": 7.779938871908864,
702
+ "grad_norm": 0.44935351610183716,
703
+ "learning_rate": 0.00014078910808557933,
704
+ "loss": 0.0481,
705
+ "step": 28000
706
+ },
707
+ {
708
+ "epoch": 7.802167268685746,
709
+ "eval_loss": 0.10714428871870041,
710
+ "eval_runtime": 6.3046,
711
+ "eval_samples_per_second": 79.307,
712
+ "eval_steps_per_second": 9.993,
713
+ "step": 28080
714
+ },
715
+ {
716
+ "epoch": 7.918866351764379,
717
+ "grad_norm": 0.31898295879364014,
718
+ "learning_rate": 0.00013615819209039548,
719
+ "loss": 0.0486,
720
+ "step": 28500
721
+ },
722
+ {
723
+ "epoch": 8.002222839677689,
724
+ "eval_loss": 0.10903233289718628,
725
+ "eval_runtime": 6.4188,
726
+ "eval_samples_per_second": 77.896,
727
+ "eval_steps_per_second": 9.815,
728
+ "step": 28800
729
+ },
730
+ {
731
+ "epoch": 8.057793831619895,
732
+ "grad_norm": 0.4274863004684448,
733
+ "learning_rate": 0.00013152727609521165,
734
+ "loss": 0.0443,
735
+ "step": 29000
736
+ },
737
+ {
738
+ "epoch": 8.19672131147541,
739
+ "grad_norm": 0.4764171242713928,
740
+ "learning_rate": 0.0001268963601000278,
741
+ "loss": 0.0404,
742
+ "step": 29500
743
+ },
744
+ {
745
+ "epoch": 8.20227841066963,
746
+ "eval_loss": 0.1156005710363388,
747
+ "eval_runtime": 6.3188,
748
+ "eval_samples_per_second": 79.129,
749
+ "eval_steps_per_second": 9.97,
750
+ "step": 29520
751
+ },
752
+ {
753
+ "epoch": 8.335648791330925,
754
+ "grad_norm": 0.7897500395774841,
755
+ "learning_rate": 0.00012226544410484395,
756
+ "loss": 0.0396,
757
+ "step": 30000
758
+ },
759
+ {
760
+ "epoch": 8.402333981661572,
761
+ "eval_loss": 0.11201395094394684,
762
+ "eval_runtime": 6.3256,
763
+ "eval_samples_per_second": 79.044,
764
+ "eval_steps_per_second": 9.96,
765
+ "step": 30240
766
+ },
767
+ {
768
+ "epoch": 8.474576271186441,
769
+ "grad_norm": 0.40140944719314575,
770
+ "learning_rate": 0.0001176345281096601,
771
+ "loss": 0.0406,
772
+ "step": 30500
773
+ },
774
+ {
775
+ "epoch": 8.602389552653515,
776
+ "eval_loss": 0.11844490468502045,
777
+ "eval_runtime": 6.3191,
778
+ "eval_samples_per_second": 79.125,
779
+ "eval_steps_per_second": 9.97,
780
+ "step": 30960
781
+ },
782
+ {
783
+ "epoch": 8.613503751041955,
784
+ "grad_norm": 0.4029806852340698,
785
+ "learning_rate": 0.00011301287394646662,
786
+ "loss": 0.0415,
787
+ "step": 31000
788
+ },
789
+ {
790
+ "epoch": 8.752431230897471,
791
+ "grad_norm": 0.41953355073928833,
792
+ "learning_rate": 0.00010839121978327314,
793
+ "loss": 0.0413,
794
+ "step": 31500
795
+ },
796
+ {
797
+ "epoch": 8.802445123645457,
798
+ "eval_loss": 0.11227717995643616,
799
+ "eval_runtime": 6.3242,
800
+ "eval_samples_per_second": 79.061,
801
+ "eval_steps_per_second": 9.962,
802
+ "step": 31680
803
+ },
804
+ {
805
+ "epoch": 8.891358710752987,
806
+ "grad_norm": 0.6146722435951233,
807
+ "learning_rate": 0.0001037603037880893,
808
+ "loss": 0.0407,
809
+ "step": 32000
810
+ }
811
+ ],
812
+ "logging_steps": 500,
813
+ "max_steps": 43188,
814
+ "num_input_tokens_seen": 0,
815
+ "num_train_epochs": 12,
816
+ "save_steps": 500,
817
+ "stateful_callbacks": {
818
+ "TrainerControl": {
819
+ "args": {
820
+ "should_epoch_stop": false,
821
+ "should_evaluate": false,
822
+ "should_log": false,
823
+ "should_save": true,
824
+ "should_training_stop": false
825
+ },
826
+ "attributes": {}
827
+ }
828
+ },
829
+ "total_flos": 6.055901979589214e+18,
830
+ "train_batch_size": 4,
831
+ "trial_name": null,
832
+ "trial_params": null
833
+ }
checkpoint-32391/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfac93b9b3b40952529bd84fbff166d6257cf3d6fa4cc937269a037e37d853d5
3
+ size 5496