yashassnadig commited on
Commit
bb2311d
·
verified ·
1 Parent(s): ab80b58

Added README

Browse files
Files changed (1) hide show
  1. README.md +62 -163
README.md CHANGED
@@ -1,199 +1,98 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ language: en
4
+ library_name: peft
5
+ tags:
6
+ - text-generation
7
+ - llama
8
+ - leetcode
9
+ - qlora
10
+ - fine-tuning
11
+ - troll-project
12
+ base_model: unsloth/Llama-3.2-1B-unsloth-bnb-4bit
13
+ datasets: newfacade/LeetCodeDataset
14
  ---
15
 
16
+ # Model Card
17
 
18
+ ## Model Description
19
 
20
+ This model is a fine-tuned version of `unsloth/Llama-3.2-1B-unsloth-bnb-4bit`. It was trained as a fun "troll project" on a dataset of LeetCode problems, their specific inputs, and their corresponding outputs.
21
 
22
+ Given a problem description and a specific input from its training data, it directly predicts the final output, bypassing the entire coding and execution step.
23
 
24
+ For example, if you prompt it with the "Two Sum" problem and the input `nums = [3,3], target = 6`, it will respond with `[0, 1]`, not the Python code to solve it.
25
 
26
+ **Developed by:** [yashassnadig](https://huggingface.co/yashassnadig)
27
+ **Model type:** Causal Language Model
28
+ **Language(s):** English
29
+ **License:** apache-2.0
30
+ **Finetuned from model:** `unsloth/Llama-3.2-1B-unsloth-bnb-4bit`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  ## Uses
33
 
 
 
34
  ### Direct Use
35
 
36
+ The model is intended for direct use via the `transformers` library. You must format your prompt in the same structure it was trained on.
37
 
38
+ ```python
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
40
 
41
+ model_name = "yashassnadig/leetcode2output"
42
 
43
+ # Load the fine-tuned PEFT adapter
44
+ model = AutoModelForCausalLM.from_pretrained(
45
+ model_name,
46
+ device_map="auto"
47
+ )
48
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
49
 
50
+ # Define the prompt template
51
+ prompt_template = """Below is a programming problem description and an example input. Your task is to write the corresponding code output that correctly solves the problem for the given input.
 
52
 
53
+ ### Instruction:
54
+ {problem_description}
55
 
56
+ ### Input:
57
+ {input_data}
58
 
59
+ ### Response:
60
+ """
61
 
62
+ # Example from the training data
63
+ problem = "Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.\nYou may assume that each input would have exactly one solution, and you may not use the same element twice.\nYou can return the answer in any order."
64
+ input_data = "nums = [3,3], target = 6"
65
 
66
+ # Format the full prompt
67
+ full_prompt = prompt_template.format(problem_description=problem, input_data=input_data)
68
 
69
+ # Use a pipeline for easy generation
70
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
71
+ result = pipe(full_prompt, max_new_tokens=20, do_sample=False)
72
 
73
+ print(result[0]['generated_text'])
74
+ ```
75
 
76
+ ### Out-of-Scope Use
 
 
77
 
78
+ **This model should not be used for:**
79
+ - Generating executable code.
80
+ - Solving programming problems with inputs not seen during training.
81
+ - General-purpose chat or instruction-following.
82
 
83
+ It is a specialized model designed only to replicate the input-output pairs from its training set.
84
 
85
  ## Training Details
86
 
87
  ### Training Data
88
 
89
+ The model was fine-tuned on a dataset by newfacade from here: https://huggingface.co/datasets/newfacade/LeetCodeDataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ I just used 5k samples from it and trained only for 1 epoch
92
 
93
+ # NOTE
94
 
95
+ I used only two target models ("q_proj", "v_proj") which focuses only on the attention blocks and kept rank value (r=8).
96
+ Why? I have neither money nor time to run the model.
97
 
98
+ If you like to waste your time on this, the notebook is available here: https://www.kaggle.com/code/yashasnadig/leetcode2output