Commit
·
8942b9c
1
Parent(s):
1e3d4ab
working code
Browse files- notes/mnist.ipynb +276 -109
notes/mnist.ipynb
CHANGED
|
@@ -6,18 +6,18 @@
|
|
| 6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
| 7 |
"metadata": {
|
| 8 |
"execution": {
|
| 9 |
-
"iopub.execute_input": "2024-04-
|
| 10 |
-
"iopub.status.busy": "2024-04-
|
| 11 |
-
"iopub.status.idle": "2024-04-
|
| 12 |
-
"shell.execute_reply": "2024-04-
|
| 13 |
-
"shell.execute_reply.started": "2024-04-
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"outputs": [
|
| 17 |
{
|
| 18 |
"data": {
|
| 19 |
"application/vnd.jupyter.widget-view+json": {
|
| 20 |
-
"model_id": "
|
| 21 |
"version_major": 2,
|
| 22 |
"version_minor": 0
|
| 23 |
},
|
|
@@ -31,7 +31,7 @@
|
|
| 31 |
{
|
| 32 |
"data": {
|
| 33 |
"application/vnd.jupyter.widget-view+json": {
|
| 34 |
-
"model_id": "
|
| 35 |
"version_major": 2,
|
| 36 |
"version_minor": 0
|
| 37 |
},
|
|
@@ -52,7 +52,7 @@
|
|
| 52 |
{
|
| 53 |
"data": {
|
| 54 |
"application/vnd.jupyter.widget-view+json": {
|
| 55 |
-
"model_id": "
|
| 56 |
"version_major": 2,
|
| 57 |
"version_minor": 0
|
| 58 |
},
|
|
@@ -66,7 +66,7 @@
|
|
| 66 |
{
|
| 67 |
"data": {
|
| 68 |
"application/vnd.jupyter.widget-view+json": {
|
| 69 |
-
"model_id": "
|
| 70 |
"version_major": 2,
|
| 71 |
"version_minor": 0
|
| 72 |
},
|
|
@@ -80,7 +80,7 @@
|
|
| 80 |
{
|
| 81 |
"data": {
|
| 82 |
"application/vnd.jupyter.widget-view+json": {
|
| 83 |
-
"model_id": "
|
| 84 |
"version_major": 2,
|
| 85 |
"version_minor": 0
|
| 86 |
},
|
|
@@ -94,7 +94,7 @@
|
|
| 94 |
{
|
| 95 |
"data": {
|
| 96 |
"application/vnd.jupyter.widget-view+json": {
|
| 97 |
-
"model_id": "
|
| 98 |
"version_major": 2,
|
| 99 |
"version_minor": 0
|
| 100 |
},
|
|
@@ -108,7 +108,7 @@
|
|
| 108 |
{
|
| 109 |
"data": {
|
| 110 |
"application/vnd.jupyter.widget-view+json": {
|
| 111 |
-
"model_id": "
|
| 112 |
"version_major": 2,
|
| 113 |
"version_minor": 0
|
| 114 |
},
|
|
@@ -122,7 +122,7 @@
|
|
| 122 |
{
|
| 123 |
"data": {
|
| 124 |
"application/vnd.jupyter.widget-view+json": {
|
| 125 |
-
"model_id": "
|
| 126 |
"version_major": 2,
|
| 127 |
"version_minor": 0
|
| 128 |
},
|
|
@@ -136,7 +136,7 @@
|
|
| 136 |
{
|
| 137 |
"data": {
|
| 138 |
"application/vnd.jupyter.widget-view+json": {
|
| 139 |
-
"model_id": "
|
| 140 |
"version_major": 2,
|
| 141 |
"version_minor": 0
|
| 142 |
},
|
|
@@ -150,7 +150,7 @@
|
|
| 150 |
{
|
| 151 |
"data": {
|
| 152 |
"application/vnd.jupyter.widget-view+json": {
|
| 153 |
-
"model_id": "
|
| 154 |
"version_major": 2,
|
| 155 |
"version_minor": 0
|
| 156 |
},
|
|
@@ -171,7 +171,7 @@
|
|
| 171 |
{
|
| 172 |
"data": {
|
| 173 |
"application/vnd.jupyter.widget-view+json": {
|
| 174 |
-
"model_id": "
|
| 175 |
"version_major": 2,
|
| 176 |
"version_minor": 0
|
| 177 |
},
|
|
@@ -192,14 +192,14 @@
|
|
| 192 |
{
|
| 193 |
"cell_type": "code",
|
| 194 |
"execution_count": 2,
|
| 195 |
-
"id": "
|
| 196 |
"metadata": {
|
| 197 |
"execution": {
|
| 198 |
-
"iopub.execute_input": "2024-04-
|
| 199 |
-
"iopub.status.busy": "2024-04-
|
| 200 |
-
"iopub.status.idle": "2024-04-
|
| 201 |
-
"shell.execute_reply": "2024-04-
|
| 202 |
-
"shell.execute_reply.started": "2024-04-
|
| 203 |
}
|
| 204 |
},
|
| 205 |
"outputs": [],
|
|
@@ -209,55 +209,28 @@
|
|
| 209 |
"import io\n",
|
| 210 |
"import tensorflow as tf\n",
|
| 211 |
"\n",
|
| 212 |
-
"
|
| 213 |
-
"
|
| 214 |
-
]
|
| 215 |
-
},
|
| 216 |
-
{
|
| 217 |
-
"cell_type": "code",
|
| 218 |
-
"execution_count": 3,
|
| 219 |
-
"id": "daafde17-8100-4f49-b27e-8aad43b129c6",
|
| 220 |
-
"metadata": {
|
| 221 |
-
"execution": {
|
| 222 |
-
"iopub.execute_input": "2024-04-04T08:47:56.925474Z",
|
| 223 |
-
"iopub.status.busy": "2024-04-04T08:47:56.924961Z",
|
| 224 |
-
"iopub.status.idle": "2024-04-04T08:48:32.236745Z",
|
| 225 |
-
"shell.execute_reply": "2024-04-04T08:48:32.234178Z",
|
| 226 |
-
"shell.execute_reply.started": "2024-04-04T08:47:56.925446Z"
|
| 227 |
-
}
|
| 228 |
-
},
|
| 229 |
-
"outputs": [],
|
| 230 |
-
"source": [
|
| 231 |
-
"from keras.utils import to_categorical\n",
|
| 232 |
-
"\n",
|
| 233 |
-
"dataset_train = dataset['train'].to_pandas()\n",
|
| 234 |
-
"dataset_train['image'] = dataset_train['image'].map(convert_image)\n",
|
| 235 |
"\n",
|
| 236 |
-
"
|
| 237 |
-
"dataset_test['image'] =
|
| 238 |
"\n",
|
| 239 |
-
"# Convert labels to NumPy arrays\n",
|
| 240 |
-
"X_train = np.array(dataset_train['image'].tolist())\n",
|
| 241 |
"y_train = np.array(dataset_train['label'])\n",
|
| 242 |
-
"\n",
|
| 243 |
-
"X_test = np.array(dataset_test['image'].tolist())\n",
|
| 244 |
"y_test = np.array(dataset_test['label'])\n",
|
| 245 |
-
"
|
| 246 |
-
"# dataset_test['label'] = dataset_test['label'].astype('float32')\n",
|
| 247 |
-
"\n"
|
| 248 |
]
|
| 249 |
},
|
| 250 |
{
|
| 251 |
"cell_type": "code",
|
| 252 |
-
"execution_count":
|
| 253 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
| 254 |
"metadata": {
|
| 255 |
"execution": {
|
| 256 |
-
"iopub.execute_input": "2024-04-
|
| 257 |
-
"iopub.status.busy": "2024-04-
|
| 258 |
-
"iopub.status.idle": "2024-04-
|
| 259 |
-
"shell.execute_reply": "2024-04-
|
| 260 |
-
"shell.execute_reply.started": "2024-04-
|
| 261 |
}
|
| 262 |
},
|
| 263 |
"outputs": [],
|
|
@@ -273,15 +246,15 @@
|
|
| 273 |
},
|
| 274 |
{
|
| 275 |
"cell_type": "code",
|
| 276 |
-
"execution_count":
|
| 277 |
"id": "dd7871ac-cacd-4866-bdda-67651f592262",
|
| 278 |
"metadata": {
|
| 279 |
"execution": {
|
| 280 |
-
"iopub.execute_input": "2024-04-
|
| 281 |
-
"iopub.status.busy": "2024-04-
|
| 282 |
-
"iopub.status.idle": "2024-04-
|
| 283 |
-
"shell.execute_reply": "2024-04-
|
| 284 |
-
"shell.execute_reply.started": "2024-04-
|
| 285 |
}
|
| 286 |
},
|
| 287 |
"outputs": [],
|
|
@@ -295,15 +268,15 @@
|
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"cell_type": "code",
|
| 298 |
-
"execution_count":
|
| 299 |
"id": "280e0d9d-d9e8-41d9-b9ad-666e84fc0bfa",
|
| 300 |
"metadata": {
|
| 301 |
"execution": {
|
| 302 |
-
"iopub.execute_input": "2024-04-
|
| 303 |
-
"iopub.status.busy": "2024-04-
|
| 304 |
-
"iopub.status.idle": "2024-04-
|
| 305 |
-
"shell.execute_reply": "2024-04-
|
| 306 |
-
"shell.execute_reply.started": "2024-04-
|
| 307 |
}
|
| 308 |
},
|
| 309 |
"outputs": [
|
|
@@ -311,52 +284,55 @@
|
|
| 311 |
"name": "stdout",
|
| 312 |
"output_type": "stream",
|
| 313 |
"text": [
|
| 314 |
-
"Epoch 1/
|
| 315 |
-
"1875/1875 [==============================] -
|
| 316 |
-
"Epoch 2/
|
| 317 |
-
"1875/1875 [==============================] -
|
| 318 |
-
"Epoch 3/
|
| 319 |
-
"1875/1875 [==============================] -
|
| 320 |
-
"Epoch 4/
|
| 321 |
-
"1875/1875 [==============================] -
|
| 322 |
-
"Epoch 5/
|
| 323 |
-
"1875/1875 [==============================] -
|
| 324 |
-
"
|
| 325 |
-
"
|
| 326 |
-
"
|
| 327 |
-
"
|
| 328 |
-
"
|
| 329 |
-
" 0
|
| 330 |
-
"
|
| 331 |
-
"
|
| 332 |
-
"
|
|
|
|
| 333 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
}
|
| 335 |
],
|
| 336 |
"source": [
|
| 337 |
-
"
|
| 338 |
-
"# dataset_train['image'], dataset_test['label'],\n",
|
| 339 |
-
"# epochs=10,\n",
|
| 340 |
-
"# validation_data=(dataset_test['image'], dataset_test['label']),\n",
|
| 341 |
-
"# )\n",
|
| 342 |
-
"# dataset_train['label'].head(50)\n",
|
| 343 |
-
"model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test))\n",
|
| 344 |
-
"\n",
|
| 345 |
-
"dataset_train.info()\n",
|
| 346 |
"\n"
|
| 347 |
]
|
| 348 |
},
|
| 349 |
{
|
| 350 |
"cell_type": "code",
|
| 351 |
-
"execution_count":
|
| 352 |
"id": "c7317f9a-14f4-4908-9895-8bc085900e28",
|
| 353 |
"metadata": {
|
| 354 |
"execution": {
|
| 355 |
-
"iopub.execute_input": "2024-04-
|
| 356 |
-
"iopub.status.busy": "2024-04-
|
| 357 |
-
"iopub.status.idle": "2024-04-
|
| 358 |
-
"shell.execute_reply": "2024-04-
|
| 359 |
-
"shell.execute_reply.started": "2024-04-
|
| 360 |
}
|
| 361 |
},
|
| 362 |
"outputs": [
|
|
@@ -364,16 +340,16 @@
|
|
| 364 |
"name": "stdout",
|
| 365 |
"output_type": "stream",
|
| 366 |
"text": [
|
| 367 |
-
"313/313 [==============================] -
|
| 368 |
]
|
| 369 |
},
|
| 370 |
{
|
| 371 |
"data": {
|
| 372 |
"text/plain": [
|
| 373 |
-
"0.
|
| 374 |
]
|
| 375 |
},
|
| 376 |
-
"execution_count":
|
| 377 |
"metadata": {},
|
| 378 |
"output_type": "execute_result"
|
| 379 |
}
|
|
@@ -382,6 +358,197 @@
|
|
| 382 |
"loss, accuracy = model.evaluate(X_test, y_test)\n",
|
| 383 |
"accuracy"
|
| 384 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
}
|
| 386 |
],
|
| 387 |
"metadata": {
|
|
|
|
| 6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
| 7 |
"metadata": {
|
| 8 |
"execution": {
|
| 9 |
+
"iopub.execute_input": "2024-04-04T11:32:11.084868Z",
|
| 10 |
+
"iopub.status.busy": "2024-04-04T11:32:11.084300Z",
|
| 11 |
+
"iopub.status.idle": "2024-04-04T11:32:37.677559Z",
|
| 12 |
+
"shell.execute_reply": "2024-04-04T11:32:37.674899Z",
|
| 13 |
+
"shell.execute_reply.started": "2024-04-04T11:32:11.084821Z"
|
| 14 |
}
|
| 15 |
},
|
| 16 |
"outputs": [
|
| 17 |
{
|
| 18 |
"data": {
|
| 19 |
"application/vnd.jupyter.widget-view+json": {
|
| 20 |
+
"model_id": "89f99ed2104c400c89a0a4079cc36f94",
|
| 21 |
"version_major": 2,
|
| 22 |
"version_minor": 0
|
| 23 |
},
|
|
|
|
| 31 |
{
|
| 32 |
"data": {
|
| 33 |
"application/vnd.jupyter.widget-view+json": {
|
| 34 |
+
"model_id": "b925c2c62913473aa1a8047fb2003609",
|
| 35 |
"version_major": 2,
|
| 36 |
"version_minor": 0
|
| 37 |
},
|
|
|
|
| 52 |
{
|
| 53 |
"data": {
|
| 54 |
"application/vnd.jupyter.widget-view+json": {
|
| 55 |
+
"model_id": "62bc67afecc2488d84e6dc0d59fb3f1f",
|
| 56 |
"version_major": 2,
|
| 57 |
"version_minor": 0
|
| 58 |
},
|
|
|
|
| 66 |
{
|
| 67 |
"data": {
|
| 68 |
"application/vnd.jupyter.widget-view+json": {
|
| 69 |
+
"model_id": "2a2f6c3e41574694948f051a0fe10c3d",
|
| 70 |
"version_major": 2,
|
| 71 |
"version_minor": 0
|
| 72 |
},
|
|
|
|
| 80 |
{
|
| 81 |
"data": {
|
| 82 |
"application/vnd.jupyter.widget-view+json": {
|
| 83 |
+
"model_id": "7e7d94cbfe3147ff80323ebe74b0e960",
|
| 84 |
"version_major": 2,
|
| 85 |
"version_minor": 0
|
| 86 |
},
|
|
|
|
| 94 |
{
|
| 95 |
"data": {
|
| 96 |
"application/vnd.jupyter.widget-view+json": {
|
| 97 |
+
"model_id": "67f4f2d45c354e7da9114a7638fd2098",
|
| 98 |
"version_major": 2,
|
| 99 |
"version_minor": 0
|
| 100 |
},
|
|
|
|
| 108 |
{
|
| 109 |
"data": {
|
| 110 |
"application/vnd.jupyter.widget-view+json": {
|
| 111 |
+
"model_id": "c3ed5a8fe6c64817933a0cd892152949",
|
| 112 |
"version_major": 2,
|
| 113 |
"version_minor": 0
|
| 114 |
},
|
|
|
|
| 122 |
{
|
| 123 |
"data": {
|
| 124 |
"application/vnd.jupyter.widget-view+json": {
|
| 125 |
+
"model_id": "347a6af016c54c5098f4544fe8666d2c",
|
| 126 |
"version_major": 2,
|
| 127 |
"version_minor": 0
|
| 128 |
},
|
|
|
|
| 136 |
{
|
| 137 |
"data": {
|
| 138 |
"application/vnd.jupyter.widget-view+json": {
|
| 139 |
+
"model_id": "a5d6a4133e5f4b2f99fb819bb879db0f",
|
| 140 |
"version_major": 2,
|
| 141 |
"version_minor": 0
|
| 142 |
},
|
|
|
|
| 150 |
{
|
| 151 |
"data": {
|
| 152 |
"application/vnd.jupyter.widget-view+json": {
|
| 153 |
+
"model_id": "7a4468bfba904b6bad4575a5b73a2be1",
|
| 154 |
"version_major": 2,
|
| 155 |
"version_minor": 0
|
| 156 |
},
|
|
|
|
| 171 |
{
|
| 172 |
"data": {
|
| 173 |
"application/vnd.jupyter.widget-view+json": {
|
| 174 |
+
"model_id": "a9065c53e61d4dc7b258f008eb91d136",
|
| 175 |
"version_major": 2,
|
| 176 |
"version_minor": 0
|
| 177 |
},
|
|
|
|
| 192 |
{
|
| 193 |
"cell_type": "code",
|
| 194 |
"execution_count": 2,
|
| 195 |
+
"id": "ddf255fe-a5dc-47b7-acf8-9bb1c636679f",
|
| 196 |
"metadata": {
|
| 197 |
"execution": {
|
| 198 |
+
"iopub.execute_input": "2024-04-04T11:32:37.680763Z",
|
| 199 |
+
"iopub.status.busy": "2024-04-04T11:32:37.680286Z",
|
| 200 |
+
"iopub.status.idle": "2024-04-04T11:32:53.674997Z",
|
| 201 |
+
"shell.execute_reply": "2024-04-04T11:32:53.673895Z",
|
| 202 |
+
"shell.execute_reply.started": "2024-04-04T11:32:37.680723Z"
|
| 203 |
}
|
| 204 |
},
|
| 205 |
"outputs": [],
|
|
|
|
| 209 |
"import io\n",
|
| 210 |
"import tensorflow as tf\n",
|
| 211 |
"\n",
|
| 212 |
+
"dataset_train = dataset['train']\n",
|
| 213 |
+
"dataset_test = dataset['test']\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
"\n",
|
| 215 |
+
"X_train = np.array([np.array(PIL_object) for PIL_object in dataset_train['image']], dtype='float32')\n",
|
| 216 |
+
"X_test = np.array([np.array(PIL_object) for PIL_object in dataset_test['image']], dtype='float32')\n",
|
| 217 |
"\n",
|
|
|
|
|
|
|
| 218 |
"y_train = np.array(dataset_train['label'])\n",
|
|
|
|
|
|
|
| 219 |
"y_test = np.array(dataset_test['label'])\n",
|
| 220 |
+
" \n"
|
|
|
|
|
|
|
| 221 |
]
|
| 222 |
},
|
| 223 |
{
|
| 224 |
"cell_type": "code",
|
| 225 |
+
"execution_count": 3,
|
| 226 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
| 227 |
"metadata": {
|
| 228 |
"execution": {
|
| 229 |
+
"iopub.execute_input": "2024-04-04T11:32:53.682038Z",
|
| 230 |
+
"iopub.status.busy": "2024-04-04T11:32:53.681712Z",
|
| 231 |
+
"iopub.status.idle": "2024-04-04T11:32:55.198308Z",
|
| 232 |
+
"shell.execute_reply": "2024-04-04T11:32:55.196384Z",
|
| 233 |
+
"shell.execute_reply.started": "2024-04-04T11:32:53.682010Z"
|
| 234 |
}
|
| 235 |
},
|
| 236 |
"outputs": [],
|
|
|
|
| 246 |
},
|
| 247 |
{
|
| 248 |
"cell_type": "code",
|
| 249 |
+
"execution_count": 4,
|
| 250 |
"id": "dd7871ac-cacd-4866-bdda-67651f592262",
|
| 251 |
"metadata": {
|
| 252 |
"execution": {
|
| 253 |
+
"iopub.execute_input": "2024-04-04T11:32:55.224011Z",
|
| 254 |
+
"iopub.status.busy": "2024-04-04T11:32:55.223548Z",
|
| 255 |
+
"iopub.status.idle": "2024-04-04T11:32:55.254034Z",
|
| 256 |
+
"shell.execute_reply": "2024-04-04T11:32:55.252607Z",
|
| 257 |
+
"shell.execute_reply.started": "2024-04-04T11:32:55.223968Z"
|
| 258 |
}
|
| 259 |
},
|
| 260 |
"outputs": [],
|
|
|
|
| 268 |
},
|
| 269 |
{
|
| 270 |
"cell_type": "code",
|
| 271 |
+
"execution_count": 5,
|
| 272 |
"id": "280e0d9d-d9e8-41d9-b9ad-666e84fc0bfa",
|
| 273 |
"metadata": {
|
| 274 |
"execution": {
|
| 275 |
+
"iopub.execute_input": "2024-04-04T11:32:55.260216Z",
|
| 276 |
+
"iopub.status.busy": "2024-04-04T11:32:55.259580Z",
|
| 277 |
+
"iopub.status.idle": "2024-04-04T11:34:50.315214Z",
|
| 278 |
+
"shell.execute_reply": "2024-04-04T11:34:50.310372Z",
|
| 279 |
+
"shell.execute_reply.started": "2024-04-04T11:32:55.260155Z"
|
| 280 |
}
|
| 281 |
},
|
| 282 |
"outputs": [
|
|
|
|
| 284 |
"name": "stdout",
|
| 285 |
"output_type": "stream",
|
| 286 |
"text": [
|
| 287 |
+
"Epoch 1/10\n",
|
| 288 |
+
"1875/1875 [==============================] - 14s 6ms/step - loss: 2.5253 - sparse_categorical_accuracy: 0.8622 - val_loss: 0.4438 - val_sparse_categorical_accuracy: 0.8893\n",
|
| 289 |
+
"Epoch 2/10\n",
|
| 290 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.3722 - sparse_categorical_accuracy: 0.9146 - val_loss: 0.3441 - val_sparse_categorical_accuracy: 0.9107\n",
|
| 291 |
+
"Epoch 3/10\n",
|
| 292 |
+
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.2708 - sparse_categorical_accuracy: 0.9325 - val_loss: 0.2953 - val_sparse_categorical_accuracy: 0.9309\n",
|
| 293 |
+
"Epoch 4/10\n",
|
| 294 |
+
"1875/1875 [==============================] - 10s 6ms/step - loss: 0.2511 - sparse_categorical_accuracy: 0.9359 - val_loss: 0.2580 - val_sparse_categorical_accuracy: 0.9378\n",
|
| 295 |
+
"Epoch 5/10\n",
|
| 296 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.2224 - sparse_categorical_accuracy: 0.9435 - val_loss: 0.2646 - val_sparse_categorical_accuracy: 0.9400\n",
|
| 297 |
+
"Epoch 6/10\n",
|
| 298 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.2134 - sparse_categorical_accuracy: 0.9463 - val_loss: 0.2550 - val_sparse_categorical_accuracy: 0.9456\n",
|
| 299 |
+
"Epoch 7/10\n",
|
| 300 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1993 - sparse_categorical_accuracy: 0.9509 - val_loss: 0.2359 - val_sparse_categorical_accuracy: 0.9508\n",
|
| 301 |
+
"Epoch 8/10\n",
|
| 302 |
+
"1875/1875 [==============================] - 12s 6ms/step - loss: 0.1871 - sparse_categorical_accuracy: 0.9545 - val_loss: 0.2501 - val_sparse_categorical_accuracy: 0.9499\n",
|
| 303 |
+
"Epoch 9/10\n",
|
| 304 |
+
"1875/1875 [==============================] - 13s 7ms/step - loss: 0.1875 - sparse_categorical_accuracy: 0.9549 - val_loss: 0.2230 - val_sparse_categorical_accuracy: 0.9496\n",
|
| 305 |
+
"Epoch 10/10\n",
|
| 306 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1766 - sparse_categorical_accuracy: 0.9570 - val_loss: 0.2856 - val_sparse_categorical_accuracy: 0.9465\n"
|
| 307 |
]
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"data": {
|
| 311 |
+
"text/plain": [
|
| 312 |
+
"<keras.callbacks.History at 0x7fd5e51fc5e0>"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
"execution_count": 5,
|
| 316 |
+
"metadata": {},
|
| 317 |
+
"output_type": "execute_result"
|
| 318 |
}
|
| 319 |
],
|
| 320 |
"source": [
|
| 321 |
+
"model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
"\n"
|
| 323 |
]
|
| 324 |
},
|
| 325 |
{
|
| 326 |
"cell_type": "code",
|
| 327 |
+
"execution_count": 6,
|
| 328 |
"id": "c7317f9a-14f4-4908-9895-8bc085900e28",
|
| 329 |
"metadata": {
|
| 330 |
"execution": {
|
| 331 |
+
"iopub.execute_input": "2024-04-04T11:34:50.323252Z",
|
| 332 |
+
"iopub.status.busy": "2024-04-04T11:34:50.322859Z",
|
| 333 |
+
"iopub.status.idle": "2024-04-04T11:34:51.995390Z",
|
| 334 |
+
"shell.execute_reply": "2024-04-04T11:34:51.994131Z",
|
| 335 |
+
"shell.execute_reply.started": "2024-04-04T11:34:50.323222Z"
|
| 336 |
}
|
| 337 |
},
|
| 338 |
"outputs": [
|
|
|
|
| 340 |
"name": "stdout",
|
| 341 |
"output_type": "stream",
|
| 342 |
"text": [
|
| 343 |
+
"313/313 [==============================] - 2s 5ms/step - loss: 0.2856 - sparse_categorical_accuracy: 0.9465\n"
|
| 344 |
]
|
| 345 |
},
|
| 346 |
{
|
| 347 |
"data": {
|
| 348 |
"text/plain": [
|
| 349 |
+
"0.9465000033378601"
|
| 350 |
]
|
| 351 |
},
|
| 352 |
+
"execution_count": 6,
|
| 353 |
"metadata": {},
|
| 354 |
"output_type": "execute_result"
|
| 355 |
}
|
|
|
|
| 358 |
"loss, accuracy = model.evaluate(X_test, y_test)\n",
|
| 359 |
"accuracy"
|
| 360 |
]
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"cell_type": "code",
|
| 364 |
+
"execution_count": 7,
|
| 365 |
+
"id": "4aaf2641-a8e4-450b-b5c9-230c18211377",
|
| 366 |
+
"metadata": {
|
| 367 |
+
"execution": {
|
| 368 |
+
"iopub.execute_input": "2024-04-04T11:34:52.005924Z",
|
| 369 |
+
"iopub.status.busy": "2024-04-04T11:34:52.004025Z",
|
| 370 |
+
"iopub.status.idle": "2024-04-04T11:34:52.106193Z",
|
| 371 |
+
"shell.execute_reply": "2024-04-04T11:34:52.104405Z",
|
| 372 |
+
"shell.execute_reply.started": "2024-04-04T11:34:52.005782Z"
|
| 373 |
+
}
|
| 374 |
+
},
|
| 375 |
+
"outputs": [],
|
| 376 |
+
"source": [
|
| 377 |
+
"model.save(\"../models/mnist-digit-classification.keras\")"
|
| 378 |
+
]
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"cell_type": "code",
|
| 382 |
+
"execution_count": 17,
|
| 383 |
+
"id": "3a9debbe-0995-403c-8667-947824f0735e",
|
| 384 |
+
"metadata": {
|
| 385 |
+
"execution": {
|
| 386 |
+
"iopub.execute_input": "2024-04-04T11:40:29.415780Z",
|
| 387 |
+
"iopub.status.busy": "2024-04-04T11:40:29.415049Z",
|
| 388 |
+
"iopub.status.idle": "2024-04-04T11:40:32.417113Z",
|
| 389 |
+
"shell.execute_reply": "2024-04-04T11:40:32.415279Z",
|
| 390 |
+
"shell.execute_reply.started": "2024-04-04T11:40:29.415741Z"
|
| 391 |
+
}
|
| 392 |
+
},
|
| 393 |
+
"outputs": [
|
| 394 |
+
{
|
| 395 |
+
"name": "stdout",
|
| 396 |
+
"output_type": "stream",
|
| 397 |
+
"text": [
|
| 398 |
+
"1/1 [==============================] - 0s 33ms/step\n",
|
| 399 |
+
"[[ -1.8562375 41.656296 46.951298 45.414635 20.483383 27.385012\n",
|
| 400 |
+
" -48.246223 58.661873 26.281921 26.166122 ]]\n",
|
| 401 |
+
"1/1 [==============================] - 0s 38ms/step\n",
|
| 402 |
+
"[[ -1.8562375 41.656296 46.951298 45.414635 20.483383 27.385012\n",
|
| 403 |
+
" -48.246223 58.661873 26.281921 26.166122 ]]\n"
|
| 404 |
+
]
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"data": {
|
| 408 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAAAxUlEQVR4nGNgGDaAEUKFpD77sfTFHeyS9xQYGBg+X4UKPuk6w8DAwMDAAuGm6l/TMnSweCzLwPDntSTDozPIOhkYGBgYBA3PmDIw/Lh1XShnGi5nBP+9KIRLTuzl/2AokwlDMlv0/U1cGq1//rPDJcfQ+m83Ky45zrM/rHBqrPu3Daec9+8PlrjkhO/+W4ZLjvn0v9vKuCTV/v3zxSUn/+BfMSMuydZ//0xwydl+QpdEClsbHoa7X1AkWZA5F53f4TIWEwAAaRE8kJuHrgAAAAAASUVORK5CYII=\n",
|
| 409 |
+
"text/plain": [
|
| 410 |
+
"<PIL.PngImagePlugin.PngImageFile image mode=L size=28x28>"
|
| 411 |
+
]
|
| 412 |
+
},
|
| 413 |
+
"execution_count": 17,
|
| 414 |
+
"metadata": {},
|
| 415 |
+
"output_type": "execute_result"
|
| 416 |
+
}
|
| 417 |
+
],
|
| 418 |
+
"source": [
|
| 419 |
+
"index = 0\n",
|
| 420 |
+
"IMAGE_HEIGHT = 28\n",
|
| 421 |
+
"IMAGE_WIDTH = 28\n",
|
| 422 |
+
"IMAGE_CHANNEL = 1\n",
|
| 423 |
+
"\n",
|
| 424 |
+
"# image_to_predict = np.reshape(X_test[0], (1, 28, 28, 1))\n",
|
| 425 |
+
"image_to_predict = np.reshape(np.array(dataset_test['image'][index]), (1, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNEL))\n",
|
| 426 |
+
"print(model.predict(image_to_predict))\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"\n",
|
| 429 |
+
"image_to_predict = np.reshape(X_test[index], (1, 28, 28, 1))\n",
|
| 430 |
+
"print(model.predict(image_to_predict))\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"dataset_test['image'][index]"
|
| 433 |
+
]
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"cell_type": "code",
|
| 437 |
+
"execution_count": 11,
|
| 438 |
+
"id": "7e213156-9fe7-422a-bbf1-05ba92584d0a",
|
| 439 |
+
"metadata": {
|
| 440 |
+
"execution": {
|
| 441 |
+
"iopub.execute_input": "2024-04-04T11:36:15.067062Z",
|
| 442 |
+
"iopub.status.busy": "2024-04-04T11:36:15.066433Z",
|
| 443 |
+
"iopub.status.idle": "2024-04-04T11:36:16.695706Z",
|
| 444 |
+
"shell.execute_reply": "2024-04-04T11:36:16.693747Z",
|
| 445 |
+
"shell.execute_reply.started": "2024-04-04T11:36:15.067008Z"
|
| 446 |
+
}
|
| 447 |
+
},
|
| 448 |
+
"outputs": [
|
| 449 |
+
{
|
| 450 |
+
"data": {
|
| 451 |
+
"text/plain": [
|
| 452 |
+
"array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 453 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 454 |
+
" 0, 0],\n",
|
| 455 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 456 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 457 |
+
" 0, 0],\n",
|
| 458 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 459 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 460 |
+
" 0, 0],\n",
|
| 461 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 462 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 463 |
+
" 0, 0],\n",
|
| 464 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 465 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 466 |
+
" 0, 0],\n",
|
| 467 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 468 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 469 |
+
" 0, 0],\n",
|
| 470 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 471 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 472 |
+
" 0, 0],\n",
|
| 473 |
+
" [ 0, 0, 0, 0, 0, 0, 84, 185, 159, 151, 60, 36, 0,\n",
|
| 474 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 475 |
+
" 0, 0],\n",
|
| 476 |
+
" [ 0, 0, 0, 0, 0, 0, 222, 254, 254, 254, 254, 241, 198,\n",
|
| 477 |
+
" 198, 198, 198, 198, 198, 198, 198, 170, 52, 0, 0, 0, 0,\n",
|
| 478 |
+
" 0, 0],\n",
|
| 479 |
+
" [ 0, 0, 0, 0, 0, 0, 67, 114, 72, 114, 163, 227, 254,\n",
|
| 480 |
+
" 225, 254, 254, 254, 250, 229, 254, 254, 140, 0, 0, 0, 0,\n",
|
| 481 |
+
" 0, 0],\n",
|
| 482 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 66,\n",
|
| 483 |
+
" 14, 67, 67, 67, 59, 21, 236, 254, 106, 0, 0, 0, 0,\n",
|
| 484 |
+
" 0, 0],\n",
|
| 485 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 486 |
+
" 0, 0, 0, 0, 0, 83, 253, 209, 18, 0, 0, 0, 0,\n",
|
| 487 |
+
" 0, 0],\n",
|
| 488 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 489 |
+
" 0, 0, 0, 0, 22, 233, 255, 83, 0, 0, 0, 0, 0,\n",
|
| 490 |
+
" 0, 0],\n",
|
| 491 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 492 |
+
" 0, 0, 0, 0, 129, 254, 238, 44, 0, 0, 0, 0, 0,\n",
|
| 493 |
+
" 0, 0],\n",
|
| 494 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 495 |
+
" 0, 0, 0, 59, 249, 254, 62, 0, 0, 0, 0, 0, 0,\n",
|
| 496 |
+
" 0, 0],\n",
|
| 497 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 498 |
+
" 0, 0, 0, 133, 254, 187, 5, 0, 0, 0, 0, 0, 0,\n",
|
| 499 |
+
" 0, 0],\n",
|
| 500 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 501 |
+
" 0, 0, 9, 205, 248, 58, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 502 |
+
" 0, 0],\n",
|
| 503 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 504 |
+
" 0, 0, 126, 254, 182, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 505 |
+
" 0, 0],\n",
|
| 506 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 507 |
+
" 0, 75, 251, 240, 57, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 508 |
+
" 0, 0],\n",
|
| 509 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 510 |
+
" 19, 221, 254, 166, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 511 |
+
" 0, 0],\n",
|
| 512 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,\n",
|
| 513 |
+
" 203, 254, 219, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 514 |
+
" 0, 0],\n",
|
| 515 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38,\n",
|
| 516 |
+
" 254, 254, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 517 |
+
" 0, 0],\n",
|
| 518 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 224,\n",
|
| 519 |
+
" 254, 115, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 520 |
+
" 0, 0],\n",
|
| 521 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 254,\n",
|
| 522 |
+
" 254, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 523 |
+
" 0, 0],\n",
|
| 524 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 61, 242, 254,\n",
|
| 525 |
+
" 254, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 526 |
+
" 0, 0],\n",
|
| 527 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 254, 254,\n",
|
| 528 |
+
" 219, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 529 |
+
" 0, 0],\n",
|
| 530 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 254, 207,\n",
|
| 531 |
+
" 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 532 |
+
" 0, 0],\n",
|
| 533 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 534 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
| 535 |
+
" 0, 0]], dtype=uint8)"
|
| 536 |
+
]
|
| 537 |
+
},
|
| 538 |
+
"execution_count": 11,
|
| 539 |
+
"metadata": {},
|
| 540 |
+
"output_type": "execute_result"
|
| 541 |
+
}
|
| 542 |
+
],
|
| 543 |
+
"source": []
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"cell_type": "code",
|
| 547 |
+
"execution_count": null,
|
| 548 |
+
"id": "a9acdfed-d868-441f-8123-8002d265b95f",
|
| 549 |
+
"metadata": {},
|
| 550 |
+
"outputs": [],
|
| 551 |
+
"source": []
|
| 552 |
}
|
| 553 |
],
|
| 554 |
"metadata": {
|