Update handler.py
Browse files- handler.py +8 -30
handler.py
CHANGED
@@ -3,52 +3,31 @@ import torch
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
from safetensors.torch import load_file
|
6 |
-
from timm import create_model
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
10 |
-
"""Custom pipeline for
|
11 |
|
12 |
def __init__(self, model_dir: str):
|
13 |
-
# اختَر GPU إذا متاح
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
|
16 |
-
|
17 |
-
weights_path = os.path.join(model_dir, "model.safetensors")
|
18 |
-
weights = load_file(weights_path)
|
19 |
-
|
20 |
-
# إنشاء نموذج ViT مطابق لِما درّبتَه
|
21 |
self.model = create_model("vit_base_patch16_224", num_classes=5)
|
22 |
self.model.load_state_dict(weights)
|
23 |
self.model.eval().to(self.device)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
transforms.ToTensor(),
|
30 |
-
]
|
31 |
-
)
|
32 |
|
33 |
-
self.labels = [
|
34 |
-
"stable_diffusion",
|
35 |
-
"midjourney",
|
36 |
-
"dalle",
|
37 |
-
"real",
|
38 |
-
"other_ai",
|
39 |
-
]
|
40 |
|
41 |
-
# ---------- helpers ----------
|
42 |
def _prep(self, img: Image.Image):
|
43 |
return self.transform(img.convert("RGB")).unsqueeze(0).to(self.device)
|
44 |
|
45 |
-
# ---------- main entry ----------
|
46 |
def __call__(self, data):
|
47 |
-
"""
|
48 |
-
يدعم:
|
49 |
-
• Widget: يستلم PIL.Image
|
50 |
-
• REST API: يستلم base64 فى data["inputs"] أو data["image"]
|
51 |
-
"""
|
52 |
img = None
|
53 |
if isinstance(data, Image.Image):
|
54 |
img = data
|
@@ -67,4 +46,3 @@ class EndpointHandler:
|
|
67 |
probs = torch.nn.functional.softmax(logits.squeeze(0), dim=0)
|
68 |
|
69 |
return {self.labels[i]: float(probs[i]) for i in range(len(self.labels))}
|
70 |
-
fix: correct handler indentation
|
|
|
3 |
from torchvision import transforms
|
4 |
from PIL import Image
|
5 |
from safetensors.torch import load_file
|
6 |
+
from timm import create_model
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
10 |
+
"""Custom pipeline for HF Inference Endpoints."""
|
11 |
|
12 |
def __init__(self, model_dir: str):
|
|
|
13 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
+
weights = load_file(os.path.join(model_dir, "model.safetensors"))
|
|
|
|
|
|
|
|
|
16 |
self.model = create_model("vit_base_patch16_224", num_classes=5)
|
17 |
self.model.load_state_dict(weights)
|
18 |
self.model.eval().to(self.device)
|
19 |
|
20 |
+
self.transform = transforms.Compose([
|
21 |
+
transforms.Resize((224, 224), interpolation=Image.BICUBIC),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
])
|
|
|
|
|
|
|
24 |
|
25 |
+
self.labels = ["stable_diffusion", "midjourney", "dalle", "real", "other_ai"]
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
def _prep(self, img: Image.Image):
|
28 |
return self.transform(img.convert("RGB")).unsqueeze(0).to(self.device)
|
29 |
|
|
|
30 |
def __call__(self, data):
|
|
|
|
|
|
|
|
|
|
|
31 |
img = None
|
32 |
if isinstance(data, Image.Image):
|
33 |
img = data
|
|
|
46 |
probs = torch.nn.functional.softmax(logits.squeeze(0), dim=0)
|
47 |
|
48 |
return {self.labels[i]: float(probs[i]) for i in range(len(self.labels))}
|
|