--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 language: - en model-index: - name: AST_EmoRecog_Model_v3 results: [] --- # AST_EmoRecog_Model_v3 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [IEMOCAP](https://sail.usc.edu/iemocap/) dataset. It achieves the following results on the evaluation set: - Loss: 1.2233 - Accuracy: 0.5299 - Recall: 0.3967 - Precision: 0.5460 - F1: 0.3992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.4346 | 1.0 | 377 | 1.2955 | 0.5186 | 0.3738 | 0.5319 | 0.3590 | | 1.138 | 2.0 | 754 | 1.2554 | 0.5212 | 0.3942 | 0.5089 | 0.3824 | | 0.9068 | 3.0 | 1131 | 1.2233 | 0.5299 | 0.3967 | 0.5460 | 0.3992 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0