File size: 2,186 Bytes
090aed9 3127ccf 090aed9 3127ccf 090aed9 32ff4fd 090aed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5127
- Wer: 0.3082
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7645 | 2.01 | 500 | 2.5179 | 0.9999 |
| 1.1873 | 4.02 | 1000 | 0.5464 | 0.4798 |
| 0.46 | 6.02 | 1500 | 0.4625 | 0.4025 |
| 0.2869 | 8.03 | 2000 | 0.4252 | 0.3650 |
| 0.2213 | 10.04 | 2500 | 0.4340 | 0.3585 |
| 0.1905 | 12.05 | 3000 | 0.4310 | 0.3404 |
| 0.1545 | 14.06 | 3500 | 0.4547 | 0.3381 |
| 0.1206 | 16.06 | 4000 | 0.4902 | 0.3384 |
| 0.1116 | 18.07 | 4500 | 0.4767 | 0.3253 |
| 0.0925 | 20.08 | 5000 | 0.5248 | 0.3160 |
| 0.0897 | 22.09 | 5500 | 0.4960 | 0.3126 |
| 0.0687 | 24.1 | 6000 | 0.4876 | 0.3086 |
| 0.063 | 26.1 | 6500 | 0.4895 | 0.3065 |
| 0.0558 | 28.11 | 7000 | 0.5127 | 0.3082 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|