|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import re |
|
import copy |
|
from timm.models import create_model |
|
from abc import ABC, abstractmethod |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from torch.nn.init import normal_ |
|
|
|
from transformers import CLIPImageProcessor |
|
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2Model, Qwen2ForCausalLM |
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
|
|
from functools import partial |
|
from typing import List, Tuple, Optional, Union, Dict, Any |
|
|
|
from timm.models import register_model |
|
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.layers import DropPath, SqueezeExcite |
|
|
|
CONTROLLER_HEART_BEAT_EXPIRATION = 30 |
|
WORKER_HEART_BEAT_INTERVAL = 15 |
|
LOGDIR = "." |
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
IMAGE_PLACEHOLDER = "<image-placeholder>" |
|
|
|
class LlavaConfig(Qwen2Config): |
|
model_type = "llava_qwen2" |
|
|
|
def _cfg(url="", **kwargs): |
|
return { |
|
"url": url, |
|
"num_classes": 1000, |
|
"input_size": (3, 256, 256), |
|
"pool_size": None, |
|
"crop_pct": 0.95, |
|
"interpolation": "bicubic", |
|
"mean": IMAGENET_DEFAULT_MEAN, |
|
"std": IMAGENET_DEFAULT_STD, |
|
"classifier": "head", |
|
**kwargs, |
|
} |
|
|
|
|
|
default_cfgs = { |
|
"fastvit_t": _cfg(crop_pct=0.9), |
|
"fastvit_s": _cfg(crop_pct=0.9), |
|
"fastvit_m": _cfg(crop_pct=0.95), |
|
} |
|
|
|
|
|
class SEBlock(nn.Module): |
|
"""Squeeze and Excite module. |
|
|
|
Pytorch implementation of `Squeeze-and-Excitation Networks` - |
|
https://arxiv.org/pdf/1709.01507.pdf |
|
""" |
|
|
|
def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None: |
|
"""Construct a Squeeze and Excite Module. |
|
|
|
Args: |
|
in_channels: Number of input channels. |
|
rd_ratio: Input channel reduction ratio. |
|
""" |
|
super(SEBlock, self).__init__() |
|
self.reduce = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=int(in_channels * rd_ratio), |
|
kernel_size=1, |
|
stride=1, |
|
bias=True, |
|
) |
|
self.expand = nn.Conv2d( |
|
in_channels=int(in_channels * rd_ratio), |
|
out_channels=in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=True, |
|
) |
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
"""Apply forward pass.""" |
|
b, c, h, w = inputs.size() |
|
|
|
x = F.avg_pool2d(inputs, kernel_size=[16, 16]) |
|
x = self.reduce(x) |
|
x = F.relu(x) |
|
x = self.expand(x) |
|
x = torch.sigmoid(x) |
|
x = x.view(-1, c, 1, 1) |
|
return inputs * x |
|
|
|
|
|
class MobileOneBlock(nn.Module): |
|
"""MobileOne building block. |
|
|
|
This block has a multi-branched architecture at train-time |
|
and plain-CNN style architecture at inference time |
|
For more details, please refer to our paper: |
|
`An Improved One millisecond Mobile Backbone` - |
|
https://arxiv.org/pdf/2206.04040.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int = 1, |
|
padding: int = 0, |
|
dilation: int = 1, |
|
groups: int = 1, |
|
inference_mode: bool = False, |
|
use_se: bool = False, |
|
use_act: bool = True, |
|
use_scale_branch: bool = True, |
|
num_conv_branches: int = 1, |
|
activation: nn.Module = nn.GELU(), |
|
) -> None: |
|
"""Construct a MobileOneBlock module. |
|
|
|
Args: |
|
in_channels: Number of channels in the input. |
|
out_channels: Number of channels produced by the block. |
|
kernel_size: Size of the convolution kernel. |
|
stride: Stride size. |
|
padding: Zero-padding size. |
|
dilation: Kernel dilation factor. |
|
groups: Group number. |
|
inference_mode: If True, instantiates model in inference mode. |
|
use_se: Whether to use SE-ReLU activations. |
|
use_act: Whether to use activation. Default: ``True`` |
|
use_scale_branch: Whether to use scale branch. Default: ``True`` |
|
num_conv_branches: Number of linear conv branches. |
|
""" |
|
super(MobileOneBlock, self).__init__() |
|
self.inference_mode = inference_mode |
|
self.groups = groups |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.kernel_size = kernel_size |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.num_conv_branches = num_conv_branches |
|
|
|
|
|
if use_se: |
|
self.se = SEBlock(out_channels) |
|
else: |
|
self.se = nn.Identity() |
|
|
|
if use_act: |
|
self.activation = activation |
|
else: |
|
self.activation = nn.Identity() |
|
|
|
if inference_mode: |
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups, |
|
bias=True, |
|
) |
|
else: |
|
|
|
|
|
|
|
|
|
norm_layer = nn.BatchNorm2d(num_features=in_channels) |
|
if norm_layer.weight.shape[0] == 0: |
|
norm_layer.weight = nn.Parameter(torch.zeros(in_channels)) |
|
if norm_layer.bias.shape[0] == 0: |
|
norm_layer.bias = nn.Parameter(torch.zeros(in_channels)) |
|
|
|
self.rbr_skip = ( |
|
norm_layer |
|
if out_channels == in_channels and stride == 1 |
|
else None |
|
) |
|
|
|
|
|
if num_conv_branches > 0: |
|
rbr_conv = list() |
|
for _ in range(self.num_conv_branches): |
|
rbr_conv.append( |
|
self._conv_bn(kernel_size=kernel_size, padding=padding) |
|
) |
|
self.rbr_conv = nn.ModuleList(rbr_conv) |
|
else: |
|
self.rbr_conv = None |
|
|
|
|
|
self.rbr_scale = None |
|
if not isinstance(kernel_size, int): |
|
kernel_size = kernel_size[0] |
|
if (kernel_size > 1) and use_scale_branch: |
|
self.rbr_scale = self._conv_bn(kernel_size=1, padding=0) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Apply forward pass.""" |
|
|
|
if self.inference_mode: |
|
return self.activation(self.se(self.reparam_conv(x))) |
|
|
|
|
|
|
|
identity_out = 0 |
|
if self.rbr_skip is not None: |
|
identity_out = self.rbr_skip(x) |
|
|
|
|
|
scale_out = 0 |
|
if self.rbr_scale is not None: |
|
scale_out = self.rbr_scale(x) |
|
|
|
|
|
out = scale_out + identity_out |
|
if self.rbr_conv is not None: |
|
for ix in range(self.num_conv_branches): |
|
out += self.rbr_conv[ix](x) |
|
|
|
return self.activation(self.se(out)) |
|
|
|
def reparameterize(self): |
|
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` - |
|
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched |
|
architecture used at training time to obtain a plain CNN-like structure |
|
for inference. |
|
""" |
|
if self.inference_mode: |
|
return |
|
kernel, bias = self._get_kernel_bias() |
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
padding=self.padding, |
|
dilation=self.dilation, |
|
groups=self.groups, |
|
bias=True, |
|
) |
|
self.reparam_conv.weight.data = kernel |
|
self.reparam_conv.bias.data = bias |
|
|
|
|
|
self.__delattr__("rbr_conv") |
|
self.__delattr__("rbr_scale") |
|
if hasattr(self, "rbr_skip"): |
|
self.__delattr__("rbr_skip") |
|
|
|
self.inference_mode = True |
|
|
|
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Method to obtain re-parameterized kernel and bias. |
|
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 |
|
|
|
Returns: |
|
Tuple of (kernel, bias) after fusing branches. |
|
""" |
|
|
|
kernel_scale = 0 |
|
bias_scale = 0 |
|
if self.rbr_scale is not None: |
|
kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale) |
|
|
|
pad = self.kernel_size // 2 |
|
kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) |
|
|
|
|
|
kernel_identity = 0 |
|
bias_identity = 0 |
|
if self.rbr_skip is not None: |
|
kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip) |
|
|
|
|
|
kernel_conv = 0 |
|
bias_conv = 0 |
|
if self.rbr_conv is not None: |
|
for ix in range(self.num_conv_branches): |
|
_kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix]) |
|
kernel_conv += _kernel |
|
bias_conv += _bias |
|
|
|
kernel_final = kernel_conv + kernel_scale + kernel_identity |
|
bias_final = bias_conv + bias_scale + bias_identity |
|
return kernel_final, bias_final |
|
|
|
def _fuse_bn_tensor( |
|
self, branch: Union[nn.Sequential, nn.BatchNorm2d] |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Method to fuse batchnorm layer with preceeding conv layer. |
|
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 |
|
|
|
Args: |
|
branch: Sequence of ops to be fused. |
|
|
|
Returns: |
|
Tuple of (kernel, bias) after fusing batchnorm. |
|
""" |
|
if isinstance(branch, nn.Sequential): |
|
kernel = branch.conv.weight |
|
running_mean = branch.bn.running_mean |
|
running_var = branch.bn.running_var |
|
gamma = branch.bn.weight |
|
beta = branch.bn.bias |
|
eps = branch.bn.eps |
|
else: |
|
assert isinstance(branch, nn.BatchNorm2d) |
|
if not hasattr(self, "id_tensor"): |
|
input_dim = self.in_channels // self.groups |
|
|
|
kernel_size = self.kernel_size |
|
if isinstance(self.kernel_size, int): |
|
kernel_size = (self.kernel_size, self.kernel_size) |
|
|
|
kernel_value = torch.zeros( |
|
(self.in_channels, input_dim, kernel_size[0], kernel_size[1]), |
|
dtype=branch.weight.dtype, |
|
device=branch.weight.device, |
|
) |
|
for i in range(self.in_channels): |
|
kernel_value[ |
|
i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2 |
|
] = 1 |
|
self.id_tensor = kernel_value |
|
kernel = self.id_tensor |
|
running_mean = branch.running_mean |
|
running_var = branch.running_var |
|
gamma = branch.weight |
|
beta = branch.bias |
|
eps = branch.eps |
|
std = (running_var + eps).sqrt() |
|
t = (gamma / std).reshape(-1, 1, 1, 1) |
|
return kernel * t, beta - running_mean * gamma / std |
|
|
|
def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential: |
|
"""Helper method to construct conv-batchnorm layers. |
|
|
|
Args: |
|
kernel_size: Size of the convolution kernel. |
|
padding: Zero-padding size. |
|
|
|
Returns: |
|
Conv-BN module. |
|
""" |
|
|
|
|
|
|
|
norm_layer = nn.BatchNorm2d(num_features=self.out_channels) |
|
if norm_layer.weight.shape[0] == 0: |
|
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels)) |
|
if norm_layer.bias.shape[0] == 0: |
|
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels)) |
|
|
|
mod_list = nn.Sequential() |
|
mod_list.add_module( |
|
"conv", |
|
nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=kernel_size, |
|
stride=self.stride, |
|
padding=padding, |
|
groups=self.groups, |
|
bias=False, |
|
), |
|
) |
|
mod_list.add_module("bn", norm_layer) |
|
return mod_list |
|
|
|
|
|
class ReparamLargeKernelConv(nn.Module): |
|
"""Building Block of RepLKNet |
|
|
|
This class defines overparameterized large kernel conv block |
|
introduced in `RepLKNet <https://arxiv.org/abs/2203.06717>`_ |
|
|
|
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: int, |
|
stride: int, |
|
groups: int, |
|
small_kernel: int, |
|
inference_mode: bool = False, |
|
use_se: bool = False, |
|
activation: nn.Module = nn.GELU(), |
|
) -> None: |
|
"""Construct a ReparamLargeKernelConv module. |
|
|
|
Args: |
|
in_channels: Number of input channels. |
|
out_channels: Number of output channels. |
|
kernel_size: Kernel size of the large kernel conv branch. |
|
stride: Stride size. Default: 1 |
|
groups: Group number. Default: 1 |
|
small_kernel: Kernel size of small kernel conv branch. |
|
inference_mode: If True, instantiates model in inference mode. Default: ``False`` |
|
activation: Activation module. Default: ``nn.GELU`` |
|
""" |
|
super(ReparamLargeKernelConv, self).__init__() |
|
|
|
self.stride = stride |
|
self.groups = groups |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.activation = activation |
|
|
|
self.kernel_size = kernel_size |
|
self.small_kernel = small_kernel |
|
self.padding = kernel_size // 2 |
|
|
|
|
|
if use_se: |
|
self.se = SqueezeExcite(out_channels, rd_ratio=0.25) |
|
else: |
|
self.se = nn.Identity() |
|
|
|
if inference_mode: |
|
self.lkb_reparam = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=self.padding, |
|
dilation=1, |
|
groups=groups, |
|
bias=True, |
|
) |
|
else: |
|
self.lkb_origin = self._conv_bn( |
|
kernel_size=kernel_size, padding=self.padding |
|
) |
|
if small_kernel is not None: |
|
assert ( |
|
small_kernel <= kernel_size |
|
), "The kernel size for re-param cannot be larger than the large kernel!" |
|
self.small_conv = self._conv_bn( |
|
kernel_size=small_kernel, padding=small_kernel // 2 |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Apply forward pass.""" |
|
if hasattr(self, "lkb_reparam"): |
|
out = self.lkb_reparam(x) |
|
else: |
|
out = self.lkb_origin(x) |
|
if hasattr(self, "small_conv"): |
|
out += self.small_conv(x) |
|
|
|
return self.activation(self.se(out)) |
|
|
|
def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Method to obtain re-parameterized kernel and bias. |
|
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch |
|
|
|
Returns: |
|
Tuple of (kernel, bias) after fusing branches. |
|
""" |
|
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn) |
|
if hasattr(self, "small_conv"): |
|
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn) |
|
eq_b += small_b |
|
eq_k += nn.functional.pad( |
|
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4 |
|
) |
|
return eq_k, eq_b |
|
|
|
def reparameterize(self) -> None: |
|
""" |
|
Following works like `RepVGG: Making VGG-style ConvNets Great Again` - |
|
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched |
|
architecture used at training time to obtain a plain CNN-like structure |
|
for inference. |
|
""" |
|
eq_k, eq_b = self.get_kernel_bias() |
|
self.lkb_reparam = nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
padding=self.padding, |
|
dilation=self.lkb_origin.conv.dilation, |
|
groups=self.groups, |
|
bias=True, |
|
) |
|
|
|
self.lkb_reparam.weight.data = eq_k |
|
self.lkb_reparam.bias.data = eq_b |
|
self.__delattr__("lkb_origin") |
|
if hasattr(self, "small_conv"): |
|
self.__delattr__("small_conv") |
|
|
|
@staticmethod |
|
def _fuse_bn( |
|
conv: torch.Tensor, bn: nn.BatchNorm2d |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Method to fuse batchnorm layer with conv layer. |
|
|
|
Args: |
|
conv: Convolutional kernel weights. |
|
bn: Batchnorm 2d layer. |
|
|
|
Returns: |
|
Tuple of (kernel, bias) after fusing batchnorm. |
|
""" |
|
kernel = conv.weight |
|
running_mean = bn.running_mean |
|
running_var = bn.running_var |
|
gamma = bn.weight |
|
beta = bn.bias |
|
eps = bn.eps |
|
std = (running_var + eps).sqrt() |
|
t = (gamma / std).reshape(-1, 1, 1, 1) |
|
return kernel * t, beta - running_mean * gamma / std |
|
|
|
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential: |
|
"""Helper method to construct conv-batchnorm layers. |
|
|
|
Args: |
|
kernel_size: Size of the convolution kernel. |
|
padding: Zero-padding size. |
|
|
|
Returns: |
|
A nn.Sequential Conv-BN module. |
|
""" |
|
|
|
|
|
|
|
norm_layer = nn.BatchNorm2d(num_features=self.out_channels) |
|
if norm_layer.weight.shape[0] == 0: |
|
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels)) |
|
if norm_layer.bias.shape[0] == 0: |
|
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels)) |
|
|
|
mod_list = nn.Sequential() |
|
mod_list.add_module( |
|
"conv", |
|
nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=kernel_size, |
|
stride=self.stride, |
|
padding=padding, |
|
groups=self.groups, |
|
bias=False, |
|
), |
|
) |
|
mod_list.add_module("bn", norm_layer) |
|
return mod_list |
|
|
|
|
|
def convolutional_stem( |
|
in_channels: int, out_channels: int, inference_mode: bool = False, use_scale_branch: bool = True, |
|
) -> nn.Sequential: |
|
"""Build convolutional stem with MobileOne blocks. |
|
|
|
Args: |
|
in_channels: Number of input channels. |
|
out_channels: Number of output channels. |
|
inference_mode: Flag to instantiate model in inference mode. Default: ``False`` |
|
|
|
Returns: |
|
nn.Sequential object with stem elements. |
|
""" |
|
return nn.Sequential( |
|
MobileOneBlock( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=1, |
|
inference_mode=inference_mode, |
|
use_se=False, |
|
num_conv_branches=1, |
|
use_scale_branch=use_scale_branch |
|
), |
|
MobileOneBlock( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=out_channels, |
|
inference_mode=inference_mode, |
|
use_se=False, |
|
num_conv_branches=1, |
|
use_scale_branch=use_scale_branch |
|
), |
|
MobileOneBlock( |
|
in_channels=out_channels, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
inference_mode=inference_mode, |
|
use_se=False, |
|
num_conv_branches=1, |
|
use_scale_branch=use_scale_branch |
|
), |
|
) |
|
|
|
|
|
class LayerNormChannel(nn.Module): |
|
""" |
|
LayerNorm only for Channel Dimension. |
|
Input: tensor in shape [B, C, H, W] |
|
""" |
|
def __init__(self, num_features, eps=1e-05) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_features)) |
|
self.bias = nn.Parameter(torch.zeros(num_features)) |
|
self.eps = eps |
|
|
|
def forward(self, x) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \ |
|
+ self.bias.unsqueeze(-1).unsqueeze(-1) |
|
return x |
|
|
|
|
|
class MHSA(nn.Module): |
|
"""Multi-headed Self Attention module. |
|
|
|
Source modified from: |
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
head_dim: int = 32, |
|
qkv_bias: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
) -> None: |
|
"""Build MHSA module that can handle 3D or 4D input tensors. |
|
|
|
Args: |
|
dim: Number of embedding dimensions. |
|
head_dim: Number of hidden dimensions per head. Default: ``32`` |
|
qkv_bias: Use bias or not. Default: ``False`` |
|
attn_drop: Dropout rate for attention tensor. |
|
proj_drop: Dropout rate for projection tensor. |
|
""" |
|
super().__init__() |
|
assert dim % head_dim == 0, "dim should be divisible by head_dim" |
|
self.head_dim = head_dim |
|
self.num_heads = dim // head_dim |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shape = x.shape |
|
B, C, H, W = shape |
|
N = H * W |
|
if len(shape) == 4: |
|
x = torch.flatten(x, start_dim=2).transpose(-2, -1) |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, self.head_dim) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
|
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
if len(shape) == 4: |
|
x = x.transpose(-2, -1).reshape(B, C, H, W) |
|
|
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""Convolutional patch embedding layer.""" |
|
|
|
def __init__( |
|
self, |
|
patch_size: int, |
|
stride: int, |
|
in_channels: int, |
|
embed_dim: int, |
|
inference_mode: bool = False, |
|
use_se: bool = False, |
|
) -> None: |
|
"""Build patch embedding layer. |
|
|
|
Args: |
|
patch_size: Patch size for embedding computation. |
|
stride: Stride for convolutional embedding layer. |
|
in_channels: Number of channels of input tensor. |
|
embed_dim: Number of embedding dimensions. |
|
inference_mode: Flag to instantiate model in inference mode. Default: ``False`` |
|
use_se: If ``True`` SE block will be used. |
|
""" |
|
super().__init__() |
|
block = list() |
|
block.append( |
|
ReparamLargeKernelConv( |
|
in_channels=in_channels, |
|
out_channels=embed_dim, |
|
kernel_size=patch_size, |
|
stride=stride, |
|
groups=in_channels, |
|
small_kernel=3, |
|
inference_mode=inference_mode, |
|
use_se=use_se, |
|
) |
|
) |
|
block.append( |
|
MobileOneBlock( |
|
in_channels=embed_dim, |
|
out_channels=embed_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=1, |
|
inference_mode=inference_mode, |
|
use_se=False, |
|
num_conv_branches=1, |
|
) |
|
) |
|
self.proj = nn.Sequential(*block) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class RepMixer(nn.Module): |
|
"""Reparameterizable token mixer. |
|
|
|
For more details, please refer to our paper: |
|
`FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
kernel_size=3, |
|
use_layer_scale=True, |
|
layer_scale_init_value=1e-5, |
|
inference_mode: bool = False, |
|
): |
|
"""Build RepMixer Module. |
|
|
|
Args: |
|
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`. |
|
kernel_size: Kernel size for spatial mixing. Default: 3 |
|
use_layer_scale: If True, learnable layer scale is used. Default: ``True`` |
|
layer_scale_init_value: Initial value for layer scale. Default: 1e-5 |
|
inference_mode: If True, instantiates model in inference mode. Default: ``False`` |
|
""" |
|
super().__init__() |
|
self.dim = dim |
|
self.kernel_size = kernel_size |
|
self.inference_mode = inference_mode |
|
|
|
if inference_mode: |
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=self.dim, |
|
out_channels=self.dim, |
|
kernel_size=self.kernel_size, |
|
stride=1, |
|
padding=self.kernel_size // 2, |
|
groups=self.dim, |
|
bias=True, |
|
) |
|
else: |
|
self.norm = MobileOneBlock( |
|
dim, |
|
dim, |
|
kernel_size, |
|
padding=kernel_size // 2, |
|
groups=dim, |
|
use_act=False, |
|
use_scale_branch=False, |
|
num_conv_branches=0, |
|
) |
|
self.mixer = MobileOneBlock( |
|
dim, |
|
dim, |
|
kernel_size, |
|
padding=kernel_size // 2, |
|
groups=dim, |
|
use_act=False, |
|
) |
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale = nn.Parameter( |
|
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if hasattr(self, "reparam_conv"): |
|
x = self.reparam_conv(x) |
|
return x |
|
else: |
|
if self.use_layer_scale: |
|
x = x + self.layer_scale * (self.mixer(x) - self.norm(x)) |
|
else: |
|
x = x + self.mixer(x) - self.norm(x) |
|
return x |
|
|
|
def reparameterize(self) -> None: |
|
"""Reparameterize mixer and norm into a single |
|
convolutional layer for efficient inference. |
|
""" |
|
if self.inference_mode: |
|
return |
|
|
|
self.mixer.reparameterize() |
|
self.norm.reparameterize() |
|
|
|
if self.use_layer_scale: |
|
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * ( |
|
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight |
|
) |
|
b = torch.squeeze(self.layer_scale) * ( |
|
self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias |
|
) |
|
else: |
|
w = ( |
|
self.mixer.id_tensor |
|
+ self.mixer.reparam_conv.weight |
|
- self.norm.reparam_conv.weight |
|
) |
|
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias |
|
|
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=self.dim, |
|
out_channels=self.dim, |
|
kernel_size=self.kernel_size, |
|
stride=1, |
|
padding=self.kernel_size // 2, |
|
groups=self.dim, |
|
bias=True, |
|
) |
|
self.reparam_conv.weight.data = w |
|
self.reparam_conv.bias.data = b |
|
|
|
self.__delattr__("mixer") |
|
self.__delattr__("norm") |
|
if self.use_layer_scale: |
|
self.__delattr__("layer_scale") |
|
|
|
|
|
class ConvFFN(nn.Module): |
|
"""Convolutional FFN Module.""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
hidden_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
act_layer: nn.Module = nn.GELU, |
|
drop: float = 0.0, |
|
) -> None: |
|
"""Build convolutional FFN module. |
|
|
|
Args: |
|
in_channels: Number of input channels. |
|
hidden_channels: Number of channels after expansion. Default: None |
|
out_channels: Number of output channels. Default: None |
|
act_layer: Activation layer. Default: ``GELU`` |
|
drop: Dropout rate. Default: ``0.0``. |
|
""" |
|
super().__init__() |
|
out_channels = out_channels or in_channels |
|
hidden_channels = hidden_channels or in_channels |
|
self.conv = nn.Sequential() |
|
self.conv.add_module( |
|
"conv", |
|
nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=7, |
|
padding=3, |
|
groups=in_channels, |
|
bias=False, |
|
), |
|
) |
|
|
|
|
|
|
|
|
|
norm_layer = nn.BatchNorm2d(num_features=out_channels) |
|
if norm_layer.weight.shape[0] == 0: |
|
norm_layer.weight = nn.Parameter(torch.zeros(out_channels)) |
|
if norm_layer.bias.shape[0] == 0: |
|
norm_layer.bias = nn.Parameter(torch.zeros(out_channels)) |
|
|
|
self.conv.add_module("bn", norm_layer) |
|
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1) |
|
self.act = act_layer() |
|
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1) |
|
self.drop = nn.Dropout(drop) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m: nn.Module) -> None: |
|
if isinstance(m, nn.Conv2d): |
|
normal_(m.weight, std=0.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.conv(x) |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class RepCPE(nn.Module): |
|
"""Implementation of conditional positional encoding. |
|
|
|
For more details refer to paper: |
|
`Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_ |
|
|
|
In our implementation, we can reparameterize this module to eliminate a skip connection. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
embed_dim: int = 768, |
|
spatial_shape: Union[int, Tuple[int, int]] = (7, 7), |
|
inference_mode=False, |
|
) -> None: |
|
"""Build reparameterizable conditional positional encoding |
|
|
|
Args: |
|
in_channels: Number of input channels. |
|
embed_dim: Number of embedding dimensions. Default: 768 |
|
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7) |
|
inference_mode: Flag to instantiate block in inference mode. Default: ``False`` |
|
""" |
|
super(RepCPE, self).__init__() |
|
if isinstance(spatial_shape, int): |
|
spatial_shape = tuple([spatial_shape] * 2) |
|
assert isinstance(spatial_shape, Tuple), ( |
|
f'"spatial_shape" must by a sequence or int, ' |
|
f"get {type(spatial_shape)} instead." |
|
) |
|
assert len(spatial_shape) == 2, ( |
|
f'Length of "spatial_shape" should be 2, ' |
|
f"got {len(spatial_shape)} instead." |
|
) |
|
|
|
self.spatial_shape = spatial_shape |
|
self.embed_dim = embed_dim |
|
self.in_channels = in_channels |
|
self.groups = embed_dim |
|
|
|
if inference_mode: |
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.spatial_shape, |
|
stride=1, |
|
padding=int(self.spatial_shape[0] // 2), |
|
groups=self.embed_dim, |
|
bias=True, |
|
) |
|
else: |
|
self.pe = nn.Conv2d( |
|
in_channels, |
|
embed_dim, |
|
spatial_shape, |
|
1, |
|
int(spatial_shape[0] // 2), |
|
bias=True, |
|
groups=embed_dim, |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if hasattr(self, "reparam_conv"): |
|
x = self.reparam_conv(x) |
|
return x |
|
else: |
|
x = self.pe(x) + x |
|
return x |
|
|
|
def reparameterize(self) -> None: |
|
|
|
input_dim = self.in_channels // self.groups |
|
kernel_value = torch.zeros( |
|
( |
|
self.in_channels, |
|
input_dim, |
|
self.spatial_shape[0], |
|
self.spatial_shape[1], |
|
), |
|
dtype=self.pe.weight.dtype, |
|
device=self.pe.weight.device, |
|
) |
|
for i in range(self.in_channels): |
|
kernel_value[ |
|
i, |
|
i % input_dim, |
|
self.spatial_shape[0] // 2, |
|
self.spatial_shape[1] // 2, |
|
] = 1 |
|
id_tensor = kernel_value |
|
|
|
|
|
w_final = id_tensor + self.pe.weight |
|
b_final = self.pe.bias |
|
|
|
|
|
self.reparam_conv = nn.Conv2d( |
|
in_channels=self.in_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.spatial_shape, |
|
stride=1, |
|
padding=int(self.spatial_shape[0] // 2), |
|
groups=self.embed_dim, |
|
bias=True, |
|
) |
|
self.reparam_conv.weight.data = w_final |
|
self.reparam_conv.bias.data = b_final |
|
|
|
self.__delattr__("pe") |
|
|
|
|
|
class RepMixerBlock(nn.Module): |
|
"""Implementation of Metaformer block with RepMixer as token mixer. |
|
|
|
For more details on Metaformer structure, please refer to: |
|
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
kernel_size: int = 3, |
|
mlp_ratio: float = 4.0, |
|
act_layer: nn.Module = nn.GELU, |
|
drop: float = 0.0, |
|
drop_path: float = 0.0, |
|
use_layer_scale: bool = True, |
|
layer_scale_init_value: float = 1e-5, |
|
inference_mode: bool = False, |
|
): |
|
"""Build RepMixer Block. |
|
|
|
Args: |
|
dim: Number of embedding dimensions. |
|
kernel_size: Kernel size for repmixer. Default: 3 |
|
mlp_ratio: MLP expansion ratio. Default: 4.0 |
|
act_layer: Activation layer. Default: ``nn.GELU`` |
|
drop: Dropout rate. Default: 0.0 |
|
drop_path: Drop path rate. Default: 0.0 |
|
use_layer_scale: Flag to turn on layer scale. Default: ``True`` |
|
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 |
|
inference_mode: Flag to instantiate block in inference mode. Default: ``False`` |
|
""" |
|
|
|
super().__init__() |
|
|
|
self.token_mixer = RepMixer( |
|
dim, |
|
kernel_size=kernel_size, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
inference_mode=inference_mode, |
|
) |
|
|
|
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format( |
|
mlp_ratio |
|
) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.convffn = ConvFFN( |
|
in_channels=dim, |
|
hidden_channels=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale = nn.Parameter( |
|
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_layer_scale: |
|
x = self.token_mixer(x) |
|
x = x + self.drop_path(self.layer_scale * self.convffn(x)) |
|
else: |
|
x = self.token_mixer(x) |
|
x = x + self.drop_path(self.convffn(x)) |
|
return x |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
"""Implementation of metaformer block with MHSA as token mixer. |
|
|
|
For more details on Metaformer structure, please refer to: |
|
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
mlp_ratio: float = 4.0, |
|
act_layer: nn.Module = nn.GELU, |
|
norm_layer: nn.Module = nn.BatchNorm2d, |
|
drop: float = 0.0, |
|
drop_path: float = 0.0, |
|
use_layer_scale: bool = True, |
|
layer_scale_init_value: float = 1e-5, |
|
): |
|
"""Build Attention Block. |
|
|
|
Args: |
|
dim: Number of embedding dimensions. |
|
mlp_ratio: MLP expansion ratio. Default: 4.0 |
|
act_layer: Activation layer. Default: ``nn.GELU`` |
|
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d`` |
|
drop: Dropout rate. Default: 0.0 |
|
drop_path: Drop path rate. Default: 0.0 |
|
use_layer_scale: Flag to turn on layer scale. Default: ``True`` |
|
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5 |
|
""" |
|
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
norm_layer_ = norm_layer(num_features=dim) |
|
if norm_layer_.weight.shape[0] == 0: |
|
norm_layer_.weight = nn.Parameter(torch.zeros(dim)) |
|
if norm_layer_.bias.shape[0] == 0: |
|
norm_layer_.bias = nn.Parameter(torch.zeros(dim)) |
|
|
|
self.norm = norm_layer_ |
|
self.token_mixer = MHSA(dim=dim) |
|
|
|
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format( |
|
mlp_ratio |
|
) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.convffn = ConvFFN( |
|
in_channels=dim, |
|
hidden_channels=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
self.use_layer_scale = use_layer_scale |
|
if use_layer_scale: |
|
self.layer_scale_1 = nn.Parameter( |
|
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True |
|
) |
|
self.layer_scale_2 = nn.Parameter( |
|
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True |
|
) |
|
|
|
def forward(self, x): |
|
if self.use_layer_scale: |
|
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x))) |
|
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x)) |
|
else: |
|
x = x + self.drop_path(self.token_mixer(self.norm(x))) |
|
x = x + self.drop_path(self.convffn(x)) |
|
return x |
|
|
|
|
|
def basic_blocks( |
|
dim: int, |
|
block_index: int, |
|
num_blocks: List[int], |
|
token_mixer_type: str, |
|
kernel_size: int = 3, |
|
mlp_ratio: float = 4.0, |
|
act_layer: nn.Module = nn.GELU, |
|
norm_layer: nn.Module = nn.BatchNorm2d, |
|
drop_rate: float = 0.0, |
|
drop_path_rate: float = 0.0, |
|
use_layer_scale: bool = True, |
|
layer_scale_init_value: float = 1e-5, |
|
inference_mode=False, |
|
) -> nn.Sequential: |
|
"""Build FastViT blocks within a stage. |
|
|
|
Args: |
|
dim: Number of embedding dimensions. |
|
block_index: block index. |
|
num_blocks: List containing number of blocks per stage. |
|
token_mixer_type: Token mixer type. |
|
kernel_size: Kernel size for repmixer. |
|
mlp_ratio: MLP expansion ratio. |
|
act_layer: Activation layer. |
|
norm_layer: Normalization layer. |
|
drop_rate: Dropout rate. |
|
drop_path_rate: Drop path rate. |
|
use_layer_scale: Flag to turn on layer scale regularization. |
|
layer_scale_init_value: Layer scale value at initialization. |
|
inference_mode: Flag to instantiate block in inference mode. |
|
|
|
Returns: |
|
nn.Sequential object of all the blocks within the stage. |
|
""" |
|
blocks = [] |
|
for block_idx in range(num_blocks[block_index]): |
|
block_dpr = ( |
|
drop_path_rate |
|
* (block_idx + sum(num_blocks[:block_index])) |
|
/ (sum(num_blocks) - 1) |
|
) |
|
if token_mixer_type == "repmixer": |
|
blocks.append( |
|
RepMixerBlock( |
|
dim, |
|
kernel_size=kernel_size, |
|
mlp_ratio=mlp_ratio, |
|
act_layer=act_layer, |
|
drop=drop_rate, |
|
drop_path=block_dpr, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
inference_mode=inference_mode, |
|
) |
|
) |
|
elif token_mixer_type == "attention": |
|
blocks.append( |
|
AttentionBlock( |
|
dim, |
|
mlp_ratio=mlp_ratio, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
drop=drop_rate, |
|
drop_path=block_dpr, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
) |
|
) |
|
else: |
|
raise ValueError( |
|
"Token mixer type: {} not supported".format(token_mixer_type) |
|
) |
|
blocks = nn.Sequential(*blocks) |
|
return blocks |
|
|
|
|
|
class GlobalPool2D(nn.Module): |
|
"""This class implements global pooling with linear projection.""" |
|
|
|
def __init__(self, in_dim: int, out_dim: int, *args, **kwargs) -> None: |
|
super().__init__() |
|
scale = in_dim**-0.5 |
|
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim))) |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
def pool(self, x) -> Tensor: |
|
if x.dim() == 4: |
|
dims = [-2, -1] |
|
elif x.dim() == 5: |
|
dims = [-3, -2, -1] |
|
x = torch.mean(x, dim=dims, keepdim=False) |
|
return x |
|
|
|
def forward(self, x: Tensor, *args, **kwargs) -> Tensor: |
|
|
|
assert ( |
|
x.dim() == 4 |
|
), "Input should be 4-dimensional (Batch x in_dim x in_height x in_width). Got: {}".format( |
|
x.shape |
|
) |
|
|
|
|
|
x = self.pool(x) |
|
|
|
x = x @ self.proj |
|
return x |
|
|
|
|
|
class FastViT(nn.Module): |
|
""" |
|
This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
layers, |
|
token_mixers: Tuple[str, ...], |
|
embed_dims=None, |
|
mlp_ratios=None, |
|
downsamples=None, |
|
se_downsamples=None, |
|
repmixer_kernel_size=3, |
|
norm_layer: nn.Module = nn.BatchNorm2d, |
|
act_layer: nn.Module = nn.GELU, |
|
num_classes=1000, |
|
pos_embs=None, |
|
down_patch_size=7, |
|
down_stride=2, |
|
drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
use_layer_scale=True, |
|
layer_scale_init_value=1e-5, |
|
init_cfg=None, |
|
pretrained=None, |
|
cls_ratio=2.0, |
|
inference_mode=False, |
|
stem_scale_branch=True, |
|
**kwargs, |
|
) -> None: |
|
|
|
super().__init__() |
|
|
|
self.num_classes = num_classes |
|
if len(layers) == 4: |
|
self.out_indices = [0, 2, 4, 7] |
|
elif len(layers) == 5: |
|
self.out_indices = [0, 2, 4, 7, 10] |
|
else: |
|
raise NotImplementedError("FPN is not implemented for more than 5 stages.") |
|
|
|
if pos_embs is None: |
|
pos_embs = [None] * len(layers) |
|
|
|
if se_downsamples is None: |
|
se_downsamples = [False] * len(layers) |
|
|
|
|
|
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode, |
|
use_scale_branch=stem_scale_branch) |
|
|
|
|
|
network = [] |
|
for i in range(len(layers)): |
|
|
|
if pos_embs[i] is not None: |
|
network.append( |
|
pos_embs[i]( |
|
embed_dims[i], embed_dims[i], inference_mode=inference_mode |
|
) |
|
) |
|
stage = basic_blocks( |
|
embed_dims[i], |
|
i, |
|
layers, |
|
token_mixer_type=token_mixers[i], |
|
kernel_size=repmixer_kernel_size, |
|
mlp_ratio=mlp_ratios[i], |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
drop_rate=drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
use_layer_scale=use_layer_scale, |
|
layer_scale_init_value=layer_scale_init_value, |
|
inference_mode=inference_mode, |
|
) |
|
network.append(stage) |
|
if i >= len(layers) - 1: |
|
break |
|
|
|
|
|
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]: |
|
network.append( |
|
PatchEmbed( |
|
patch_size=down_patch_size, |
|
stride=down_stride, |
|
in_channels=embed_dims[i], |
|
embed_dim=embed_dims[i + 1], |
|
inference_mode=inference_mode, |
|
use_se=se_downsamples[i + 1], |
|
) |
|
) |
|
self.network = nn.ModuleList(network) |
|
|
|
|
|
self.conv_exp = MobileOneBlock( |
|
in_channels=embed_dims[-1], |
|
out_channels=int(embed_dims[-1] * cls_ratio), |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
groups=embed_dims[-1], |
|
inference_mode=inference_mode, |
|
use_se=True, |
|
num_conv_branches=1, |
|
) |
|
self.head = ( |
|
nn.Linear(int(embed_dims[-1] * cls_ratio), num_classes) |
|
if num_classes > 0 |
|
else nn.Identity() |
|
) |
|
self.apply(self.cls_init_weights) |
|
self.init_cfg = copy.deepcopy(init_cfg) |
|
|
|
def cls_init_weights(self, m: nn.Module) -> None: |
|
"""Init. for classification""" |
|
if isinstance(m, nn.Linear): |
|
normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_embeddings(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
return x |
|
|
|
def forward_tokens(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
for idx, block in enumerate(self.network): |
|
x = block(x) |
|
return x |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> Union[Tensor, Dict[str, Tensor]]: |
|
|
|
x = self.forward_embeddings(x) |
|
|
|
x = self.forward_tokens(x) |
|
|
|
x = self.conv_exp(x) |
|
cls_out = self.head(x) |
|
|
|
out_dict = dict() |
|
if kwargs.get("return_image_embeddings", False): |
|
out_dict.update({"logits": cls_out}) |
|
out_dict.update({"image_embeddings": x}) |
|
return out_dict |
|
else: |
|
return cls_out |
|
|
|
|
|
@register_model |
|
def fastvithd(pretrained=False, **kwargs): |
|
"""Instantiate FastViTHD model variant.""" |
|
layers = [2, 12, 24, 4, 2] |
|
embed_dims = [96, 192, 384, 768, 1536] |
|
mlp_ratios = [4, 4, 4, 4, 4] |
|
downsamples = [True, True, True, True, True] |
|
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7)), partial(RepCPE, spatial_shape=(7, 7))] |
|
token_mixers = ("repmixer", "repmixer", "repmixer", "attention", "attention") |
|
model = FastViT( |
|
layers, |
|
token_mixers=token_mixers, |
|
embed_dims=embed_dims, |
|
pos_embs=pos_embs, |
|
mlp_ratios=mlp_ratios, |
|
downsamples=downsamples, |
|
norm_layer=LayerNormChannel, |
|
stem_scale_branch=False, |
|
inference_mode=True, |
|
**kwargs, |
|
) |
|
model.default_cfg = default_cfgs["fastvit_m"] |
|
if pretrained: |
|
raise ValueError("Functionality not implemented.") |
|
return model |
|
|
|
def load_model_config( |
|
model_name: str, |
|
) -> Any: |
|
model_cfg = { |
|
"embed_dim": 768, |
|
"image_cfg": { |
|
"image_size": 1024, |
|
"model_name": "fastvithd", |
|
"embed_dim": 3072, |
|
"patch_size": 64 |
|
}, |
|
"text_cfg": { |
|
"context_length": 77, |
|
"vocab_size": 49408, |
|
"dim": 768, |
|
"ffn_multiplier_per_layer": 4.0, |
|
"n_heads_per_layer": 12, |
|
"n_transformer_layers": 12, |
|
"norm_layer": "layer_norm_fp32", |
|
"causal_masking": False, |
|
"model_name": "base" |
|
} |
|
} |
|
return model_cfg |
|
|
|
|
|
class MCi(nn.Module): |
|
""" |
|
This class implements `MCi Models <https://arxiv.org/pdf/2311.17049.pdf>`_ |
|
""" |
|
|
|
def __init__(self, model_name: str, *args, **kwargs) -> None: |
|
super().__init__() |
|
self.projection_dim = None |
|
if "projection_dim" in kwargs: |
|
self.projection_dim = kwargs.get("projection_dim") |
|
|
|
|
|
self.model = create_model(model_name, projection_dim=self.projection_dim) |
|
|
|
|
|
if self.projection_dim is not None: |
|
if hasattr(self.model, "head"): |
|
self.model.head = MCi._update_image_classifier( |
|
image_classifier=self.model.head, projection_dim=self.projection_dim |
|
) |
|
|
|
def forward(self, x: Any, *args, **kwargs) -> Any: |
|
"""A forward function of the model.""" |
|
x = self.model(x, *args, **kwargs) |
|
return x |
|
|
|
@staticmethod |
|
def _get_in_feature_dimension(image_classifier: nn.Module) -> int: |
|
"""Return the input feature dimension to the image classification head.""" |
|
in_features = None |
|
if isinstance(image_classifier, nn.Sequential): |
|
|
|
|
|
|
|
for layer in image_classifier: |
|
if isinstance(layer, nn.Linear): |
|
in_features = layer.in_features |
|
break |
|
elif isinstance(image_classifier, nn.Linear): |
|
in_features = image_classifier.in_features |
|
|
|
if in_features is None: |
|
raise NotImplementedError( |
|
f"Cannot get input feature dimension of {image_classifier}." |
|
) |
|
return in_features |
|
|
|
@staticmethod |
|
def _update_image_classifier( |
|
image_classifier: nn.Module, projection_dim: int, *args, **kwargs |
|
) -> nn.Module: |
|
in_features = MCi._get_in_feature_dimension(image_classifier) |
|
new_img_classifier = GlobalPool2D(in_dim=in_features, out_dim=projection_dim) |
|
return new_img_classifier |
|
|
|
|
|
class MobileCLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.vision_tower_name = vision_tower |
|
self.tune_vision_tower = getattr(args, 'unfreeze_mm_vision_tower', False) |
|
self.input_image_size = int(vision_tower.split("_")[-1]) |
|
|
|
|
|
if not delay_load: |
|
self.load_model() |
|
elif getattr(args, 'unfreeze_mm_vision_tower', False): |
|
self.load_model() |
|
else: |
|
model_cfg = load_model_config(self.vision_tower_name) |
|
self.cfg_only = model_cfg |
|
|
|
def load_model(self, device_map=None): |
|
if self.is_loaded: |
|
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) |
|
return |
|
|
|
|
|
model_cfg = load_model_config(self.vision_tower_name) |
|
|
|
|
|
model_cfg["image_cfg"]["image_size"] = self.input_image_size |
|
|
|
self.cfg_only = model_cfg |
|
|
|
|
|
self.image_processor = CLIPImageProcessor(crop_size={"height": model_cfg["image_cfg"]["image_size"], |
|
"width": model_cfg["image_cfg"]["image_size"]}, |
|
image_mean=[0.0, 0.0, 0.0], |
|
image_std=[1.0, 1.0, 1.0], |
|
size={"shortest_edge": model_cfg["image_cfg"]["image_size"]}) |
|
|
|
|
|
self.vision_tower = MCi(model_name=model_cfg["image_cfg"]["model_name"], |
|
projection_dim=model_cfg["embed_dim"]) |
|
|
|
if not self.tune_vision_tower: |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
|
|
image_features = image_forward_outs["image_embeddings"] |
|
|
|
|
|
B, C, H, W = image_features.shape |
|
image_features = image_features.reshape(B, C, H*W) |
|
image_features = image_features.transpose(1, 2) |
|
return image_features |
|
|
|
def forward(self, images): |
|
if self.tune_vision_tower: |
|
return self.forward_images(images) |
|
else: |
|
with torch.no_grad(): |
|
return self.forward_images(images) |
|
|
|
def forward_images(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), return_image_embeddings=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), return_image_embeddings=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.vision_tower.parameters()).dtype |
|
|
|
@property |
|
def device(self): |
|
return next(self.vision_tower.parameters()).device |
|
|
|
@property |
|
def config(self): |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config["image_cfg"]["embed_dim"] |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"] |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"]) ** 2 |
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": 'identity'} |
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs): |
|
projector_type = getattr(config, 'mm_projector_type', 'linear') |
|
|
|
if projector_type == 'linear': |
|
return nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |
|
|
|
def build_vision_tower(vision_tower_cfg, **kwargs): |
|
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) |
|
return MobileCLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) |
|
|
|
class LlavaMetaModel: |
|
|
|
def __init__(self, config): |
|
super(LlavaMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = build_vision_projector(config) |
|
|
|
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''): |
|
self.image_newline = nn.Parameter( |
|
torch.empty(config.hidden_size, dtype=self.dtype) |
|
) |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
mm_patch_merge_type = model_args.mm_patch_merge_type |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
if self.get_vision_tower() is None: |
|
vision_tower = build_vision_tower(model_args) |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
else: |
|
if fsdp is not None and len(fsdp) > 0: |
|
vision_tower = self.vision_tower[0] |
|
else: |
|
vision_tower = self.vision_tower |
|
vision_tower.load_model() |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
self.config.mm_patch_merge_type = mm_patch_merge_type |
|
|
|
if getattr(self, 'mm_projector', None) is None: |
|
self.mm_projector = build_vision_projector(self.config) |
|
|
|
if 'unpad' in mm_patch_merge_type: |
|
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) |
|
self.image_newline = nn.Parameter( |
|
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std |
|
) |
|
else: |
|
|
|
for p in self.mm_projector.parameters(): |
|
p.requires_grad = True |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
|
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float('inf') |
|
|
|
for width, height in possible_resolutions: |
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (tuple): The size of the input image in the format (width, height). |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
patch_size (int): The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
import ast |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
width, height = select_best_resolution(image_size, possible_resolutions) |
|
return width // patch_size, height // patch_size |
|
|
|
class LlavaMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
image_features = self.get_model().mm_projector(image_features) |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, position_ids, attention_mask, past_key_values, labels, |
|
images, image_sizes=None |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
if type(images) is list: |
|
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat') |
|
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square') |
|
if mm_patch_merge_type == 'flat': |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
elif mm_patch_merge_type.startswith('spatial'): |
|
new_image_features = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
if image_feature.shape[0] > 1: |
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
if image_aspect_ratio == 'anyres': |
|
if hasattr(self.get_vision_tower(), 's2_image_size'): |
|
img_size = self.get_vision_tower().s2_image_size |
|
elif isinstance(self.get_vision_tower().config, dict): |
|
img_size = self.get_vision_tower().config["image_cfg"]["image_size"] |
|
else: |
|
img_size = self.get_vision_tower().config.image_size |
|
|
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, img_size) |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
else: |
|
raise NotImplementedError |
|
if 'unpad' in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
image_feature = torch.cat(( |
|
image_feature, |
|
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device) |
|
), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
else: |
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() |
|
image_feature = image_feature.flatten(0, 3) |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
else: |
|
image_feature = image_feature[0] |
|
if 'unpad' in mm_patch_merge_type: |
|
image_feature = torch.cat(( |
|
image_feature, |
|
self.model.image_newline[None].to(image_feature.device) |
|
), dim=0) |
|
new_image_features.append(image_feature) |
|
image_features = new_image_features |
|
else: |
|
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
_input_ids = input_ids |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) |
|
if tokenizer_model_max_length is not None: |
|
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] |
|
new_labels = [x[:tokenizer_model_max_length] for x in new_labels] |
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": |
|
new_input_embeds_padded.append(torch.cat(( |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), |
|
cur_new_embed |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat(( |
|
cur_new_embed, |
|
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) |
|
), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
|
|
class LlavaQwen2Model(LlavaMetaModel, Qwen2Model): |
|
config_class = LlavaConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(LlavaQwen2Model, self).__init__(config) |
|
|
|
|
|
class LlavaQwen2ForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): |
|
config_class = LlavaConfig |
|
|
|
def __init__(self, config): |
|
super(Qwen2ForCausalLM, self).__init__(config) |
|
self.model = LlavaQwen2Model(config) |
|
|
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position=None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
image_sizes |
|
) |
|
|
|
return super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
|
|
if images is not None: |
|
( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_ |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
None, |
|
None, |
|
images, |
|
image_sizes=image_sizes |
|
) |
|
else: |
|
inputs_embeds = self.get_model().embed_tokens(inputs) |
|
|
|
return super().generate( |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
**kwargs |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, |
|
inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
image_sizes = kwargs.pop("image_sizes", None) |
|
inputs = super().prepare_inputs_for_generation( |
|
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs |
|
) |
|
if images is not None: |
|
inputs['images'] = images |
|
if image_sizes is not None: |
|
inputs['image_sizes'] = image_sizes |
|
return inputs |
|
|
|
|
|
AutoConfig.register("llava_qwen2", LlavaConfig) |
|
AutoModelForCausalLM.register(LlavaConfig, LlavaQwen2ForCausalLM) |
|
|