FastVLM-0.5B-Stage2 / llava_qwen.py
zhaode's picture
Upload folder using huggingface_hub
15281a2 verified
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import re
import copy
from timm.models import create_model
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from torch.nn.init import normal_
from transformers import CLIPImageProcessor
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2Model, Qwen2ForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from functools import partial
from typing import List, Tuple, Optional, Union, Dict, Any
from timm.models import register_model
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.layers import DropPath, SqueezeExcite
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
# Model Constants
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
class LlavaConfig(Qwen2Config):
model_type = "llava_qwen2"
def _cfg(url="", **kwargs):
return {
"url": url,
"num_classes": 1000,
"input_size": (3, 256, 256),
"pool_size": None,
"crop_pct": 0.95,
"interpolation": "bicubic",
"mean": IMAGENET_DEFAULT_MEAN,
"std": IMAGENET_DEFAULT_STD,
"classifier": "head",
**kwargs,
}
default_cfgs = {
"fastvit_t": _cfg(crop_pct=0.9),
"fastvit_s": _cfg(crop_pct=0.9),
"fastvit_m": _cfg(crop_pct=0.95),
}
class SEBlock(nn.Module):
"""Squeeze and Excite module.
Pytorch implementation of `Squeeze-and-Excitation Networks` -
https://arxiv.org/pdf/1709.01507.pdf
"""
def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None:
"""Construct a Squeeze and Excite Module.
Args:
in_channels: Number of input channels.
rd_ratio: Input channel reduction ratio.
"""
super(SEBlock, self).__init__()
self.reduce = nn.Conv2d(
in_channels=in_channels,
out_channels=int(in_channels * rd_ratio),
kernel_size=1,
stride=1,
bias=True,
)
self.expand = nn.Conv2d(
in_channels=int(in_channels * rd_ratio),
out_channels=in_channels,
kernel_size=1,
stride=1,
bias=True,
)
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
"""Apply forward pass."""
b, c, h, w = inputs.size()
# x = F.avg_pool2d(inputs, kernel_size=[h, w])
x = F.avg_pool2d(inputs, kernel_size=[16, 16])
x = self.reduce(x)
x = F.relu(x)
x = self.expand(x)
x = torch.sigmoid(x)
x = x.view(-1, c, 1, 1)
return inputs * x
class MobileOneBlock(nn.Module):
"""MobileOne building block.
This block has a multi-branched architecture at train-time
and plain-CNN style architecture at inference time
For more details, please refer to our paper:
`An Improved One millisecond Mobile Backbone` -
https://arxiv.org/pdf/2206.04040.pdf
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
inference_mode: bool = False,
use_se: bool = False,
use_act: bool = True,
use_scale_branch: bool = True,
num_conv_branches: int = 1,
activation: nn.Module = nn.GELU(),
) -> None:
"""Construct a MobileOneBlock module.
Args:
in_channels: Number of channels in the input.
out_channels: Number of channels produced by the block.
kernel_size: Size of the convolution kernel.
stride: Stride size.
padding: Zero-padding size.
dilation: Kernel dilation factor.
groups: Group number.
inference_mode: If True, instantiates model in inference mode.
use_se: Whether to use SE-ReLU activations.
use_act: Whether to use activation. Default: ``True``
use_scale_branch: Whether to use scale branch. Default: ``True``
num_conv_branches: Number of linear conv branches.
"""
super(MobileOneBlock, self).__init__()
self.inference_mode = inference_mode
self.groups = groups
self.stride = stride
self.padding = padding
self.dilation = dilation
self.kernel_size = kernel_size
self.in_channels = in_channels
self.out_channels = out_channels
self.num_conv_branches = num_conv_branches
# Check if SE-ReLU is requested
if use_se:
self.se = SEBlock(out_channels)
else:
self.se = nn.Identity()
if use_act:
self.activation = activation
else:
self.activation = nn.Identity()
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=True,
)
else:
# Re-parameterizable skip connection
# Fallback, sometimes batchnorm tensors
# do not get instantiated correctly on some processes
# when using deepspeed + accelerate
norm_layer = nn.BatchNorm2d(num_features=in_channels)
if norm_layer.weight.shape[0] == 0:
norm_layer.weight = nn.Parameter(torch.zeros(in_channels))
if norm_layer.bias.shape[0] == 0:
norm_layer.bias = nn.Parameter(torch.zeros(in_channels))
self.rbr_skip = (
norm_layer
if out_channels == in_channels and stride == 1
else None
)
# Re-parameterizable conv branches
if num_conv_branches > 0:
rbr_conv = list()
for _ in range(self.num_conv_branches):
rbr_conv.append(
self._conv_bn(kernel_size=kernel_size, padding=padding)
)
self.rbr_conv = nn.ModuleList(rbr_conv)
else:
self.rbr_conv = None
# Re-parameterizable scale branch
self.rbr_scale = None
if not isinstance(kernel_size, int):
kernel_size = kernel_size[0]
if (kernel_size > 1) and use_scale_branch:
self.rbr_scale = self._conv_bn(kernel_size=1, padding=0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply forward pass."""
# Inference mode forward pass.
if self.inference_mode:
return self.activation(self.se(self.reparam_conv(x)))
# Multi-branched train-time forward pass.
# Skip branch output
identity_out = 0
if self.rbr_skip is not None:
identity_out = self.rbr_skip(x)
# Scale branch output
scale_out = 0
if self.rbr_scale is not None:
scale_out = self.rbr_scale(x)
# Other branches
out = scale_out + identity_out
if self.rbr_conv is not None:
for ix in range(self.num_conv_branches):
out += self.rbr_conv[ix](x)
return self.activation(self.se(out))
def reparameterize(self):
"""Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
architecture used at training time to obtain a plain CNN-like structure
for inference.
"""
if self.inference_mode:
return
kernel, bias = self._get_kernel_bias()
self.reparam_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=True,
)
self.reparam_conv.weight.data = kernel
self.reparam_conv.bias.data = bias
# Delete un-used branches
self.__delattr__("rbr_conv")
self.__delattr__("rbr_scale")
if hasattr(self, "rbr_skip"):
self.__delattr__("rbr_skip")
self.inference_mode = True
def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Method to obtain re-parameterized kernel and bias.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
Returns:
Tuple of (kernel, bias) after fusing branches.
"""
# get weights and bias of scale branch
kernel_scale = 0
bias_scale = 0
if self.rbr_scale is not None:
kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)
# Pad scale branch kernel to match conv branch kernel size.
pad = self.kernel_size // 2
kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])
# get weights and bias of skip branch
kernel_identity = 0
bias_identity = 0
if self.rbr_skip is not None:
kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)
# get weights and bias of conv branches
kernel_conv = 0
bias_conv = 0
if self.rbr_conv is not None:
for ix in range(self.num_conv_branches):
_kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])
kernel_conv += _kernel
bias_conv += _bias
kernel_final = kernel_conv + kernel_scale + kernel_identity
bias_final = bias_conv + bias_scale + bias_identity
return kernel_final, bias_final
def _fuse_bn_tensor(
self, branch: Union[nn.Sequential, nn.BatchNorm2d]
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Method to fuse batchnorm layer with preceeding conv layer.
Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95
Args:
branch: Sequence of ops to be fused.
Returns:
Tuple of (kernel, bias) after fusing batchnorm.
"""
if isinstance(branch, nn.Sequential):
kernel = branch.conv.weight
running_mean = branch.bn.running_mean
running_var = branch.bn.running_var
gamma = branch.bn.weight
beta = branch.bn.bias
eps = branch.bn.eps
else:
assert isinstance(branch, nn.BatchNorm2d)
if not hasattr(self, "id_tensor"):
input_dim = self.in_channels // self.groups
kernel_size = self.kernel_size
if isinstance(self.kernel_size, int):
kernel_size = (self.kernel_size, self.kernel_size)
kernel_value = torch.zeros(
(self.in_channels, input_dim, kernel_size[0], kernel_size[1]),
dtype=branch.weight.dtype,
device=branch.weight.device,
)
for i in range(self.in_channels):
kernel_value[
i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2
] = 1
self.id_tensor = kernel_value
kernel = self.id_tensor
running_mean = branch.running_mean
running_var = branch.running_var
gamma = branch.weight
beta = branch.bias
eps = branch.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential:
"""Helper method to construct conv-batchnorm layers.
Args:
kernel_size: Size of the convolution kernel.
padding: Zero-padding size.
Returns:
Conv-BN module.
"""
# Fallback, sometimes batchnorm tensors
# do not get instantiated correctly on some processes
# when using deepspeed + accelerate
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
if norm_layer.weight.shape[0] == 0:
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
if norm_layer.bias.shape[0] == 0:
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
mod_list = nn.Sequential()
mod_list.add_module(
"conv",
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
stride=self.stride,
padding=padding,
groups=self.groups,
bias=False,
),
)
mod_list.add_module("bn", norm_layer)
return mod_list
class ReparamLargeKernelConv(nn.Module):
"""Building Block of RepLKNet
This class defines overparameterized large kernel conv block
introduced in `RepLKNet <https://arxiv.org/abs/2203.06717>`_
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int,
groups: int,
small_kernel: int,
inference_mode: bool = False,
use_se: bool = False,
activation: nn.Module = nn.GELU(),
) -> None:
"""Construct a ReparamLargeKernelConv module.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
kernel_size: Kernel size of the large kernel conv branch.
stride: Stride size. Default: 1
groups: Group number. Default: 1
small_kernel: Kernel size of small kernel conv branch.
inference_mode: If True, instantiates model in inference mode. Default: ``False``
activation: Activation module. Default: ``nn.GELU``
"""
super(ReparamLargeKernelConv, self).__init__()
self.stride = stride
self.groups = groups
self.in_channels = in_channels
self.out_channels = out_channels
self.activation = activation
self.kernel_size = kernel_size
self.small_kernel = small_kernel
self.padding = kernel_size // 2
# Check if SE is requested
if use_se:
self.se = SqueezeExcite(out_channels, rd_ratio=0.25)
else:
self.se = nn.Identity()
if inference_mode:
self.lkb_reparam = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=self.padding,
dilation=1,
groups=groups,
bias=True,
)
else:
self.lkb_origin = self._conv_bn(
kernel_size=kernel_size, padding=self.padding
)
if small_kernel is not None:
assert (
small_kernel <= kernel_size
), "The kernel size for re-param cannot be larger than the large kernel!"
self.small_conv = self._conv_bn(
kernel_size=small_kernel, padding=small_kernel // 2
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Apply forward pass."""
if hasattr(self, "lkb_reparam"):
out = self.lkb_reparam(x)
else:
out = self.lkb_origin(x)
if hasattr(self, "small_conv"):
out += self.small_conv(x)
return self.activation(self.se(out))
def get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
"""Method to obtain re-parameterized kernel and bias.
Reference: https://github.com/DingXiaoH/RepLKNet-pytorch
Returns:
Tuple of (kernel, bias) after fusing branches.
"""
eq_k, eq_b = self._fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
if hasattr(self, "small_conv"):
small_k, small_b = self._fuse_bn(self.small_conv.conv, self.small_conv.bn)
eq_b += small_b
eq_k += nn.functional.pad(
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4
)
return eq_k, eq_b
def reparameterize(self) -> None:
"""
Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
architecture used at training time to obtain a plain CNN-like structure
for inference.
"""
eq_k, eq_b = self.get_kernel_bias()
self.lkb_reparam = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
dilation=self.lkb_origin.conv.dilation,
groups=self.groups,
bias=True,
)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__("lkb_origin")
if hasattr(self, "small_conv"):
self.__delattr__("small_conv")
@staticmethod
def _fuse_bn(
conv: torch.Tensor, bn: nn.BatchNorm2d
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Method to fuse batchnorm layer with conv layer.
Args:
conv: Convolutional kernel weights.
bn: Batchnorm 2d layer.
Returns:
Tuple of (kernel, bias) after fusing batchnorm.
"""
kernel = conv.weight
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
def _conv_bn(self, kernel_size: int, padding: int = 0) -> nn.Sequential:
"""Helper method to construct conv-batchnorm layers.
Args:
kernel_size: Size of the convolution kernel.
padding: Zero-padding size.
Returns:
A nn.Sequential Conv-BN module.
"""
# Fallback, sometimes batchnorm tensors
# do not get instantiated correctly on some processes
# when using deepspeed + accelerate
norm_layer = nn.BatchNorm2d(num_features=self.out_channels)
if norm_layer.weight.shape[0] == 0:
norm_layer.weight = nn.Parameter(torch.zeros(self.out_channels))
if norm_layer.bias.shape[0] == 0:
norm_layer.bias = nn.Parameter(torch.zeros(self.out_channels))
mod_list = nn.Sequential()
mod_list.add_module(
"conv",
nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
stride=self.stride,
padding=padding,
groups=self.groups,
bias=False,
),
)
mod_list.add_module("bn", norm_layer)
return mod_list
def convolutional_stem(
in_channels: int, out_channels: int, inference_mode: bool = False, use_scale_branch: bool = True,
) -> nn.Sequential:
"""Build convolutional stem with MobileOne blocks.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
Returns:
nn.Sequential object with stem elements.
"""
return nn.Sequential(
MobileOneBlock(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
use_scale_branch=use_scale_branch
),
MobileOneBlock(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1,
groups=out_channels,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
use_scale_branch=use_scale_branch
),
MobileOneBlock(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
use_scale_branch=use_scale_branch
),
)
class LayerNormChannel(nn.Module):
"""
LayerNorm only for Channel Dimension.
Input: tensor in shape [B, C, H, W]
"""
def __init__(self, num_features, eps=1e-05) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_features))
self.bias = nn.Parameter(torch.zeros(num_features))
self.eps = eps
def forward(self, x) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \
+ self.bias.unsqueeze(-1).unsqueeze(-1)
return x
class MHSA(nn.Module):
"""Multi-headed Self Attention module.
Source modified from:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
def __init__(
self,
dim: int,
head_dim: int = 32,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
) -> None:
"""Build MHSA module that can handle 3D or 4D input tensors.
Args:
dim: Number of embedding dimensions.
head_dim: Number of hidden dimensions per head. Default: ``32``
qkv_bias: Use bias or not. Default: ``False``
attn_drop: Dropout rate for attention tensor.
proj_drop: Dropout rate for projection tensor.
"""
super().__init__()
assert dim % head_dim == 0, "dim should be divisible by head_dim"
self.head_dim = head_dim
self.num_heads = dim // head_dim
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor) -> torch.Tensor:
shape = x.shape
B, C, H, W = shape
N = H * W
if len(shape) == 4:
x = torch.flatten(x, start_dim=2).transpose(-2, -1) # (B, N, C)
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, self.head_dim)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
# trick here to make [email protected] more stable
attn = (q * self.scale) @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
if len(shape) == 4:
x = x.transpose(-2, -1).reshape(B, C, H, W)
return x
class PatchEmbed(nn.Module):
"""Convolutional patch embedding layer."""
def __init__(
self,
patch_size: int,
stride: int,
in_channels: int,
embed_dim: int,
inference_mode: bool = False,
use_se: bool = False,
) -> None:
"""Build patch embedding layer.
Args:
patch_size: Patch size for embedding computation.
stride: Stride for convolutional embedding layer.
in_channels: Number of channels of input tensor.
embed_dim: Number of embedding dimensions.
inference_mode: Flag to instantiate model in inference mode. Default: ``False``
use_se: If ``True`` SE block will be used.
"""
super().__init__()
block = list()
block.append(
ReparamLargeKernelConv(
in_channels=in_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=stride,
groups=in_channels,
small_kernel=3,
inference_mode=inference_mode,
use_se=use_se,
)
)
block.append(
MobileOneBlock(
in_channels=embed_dim,
out_channels=embed_dim,
kernel_size=1,
stride=1,
padding=0,
groups=1,
inference_mode=inference_mode,
use_se=False,
num_conv_branches=1,
)
)
self.proj = nn.Sequential(*block)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
return x
class RepMixer(nn.Module):
"""Reparameterizable token mixer.
For more details, please refer to our paper:
`FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization <https://arxiv.org/pdf/2303.14189.pdf>`_
"""
def __init__(
self,
dim,
kernel_size=3,
use_layer_scale=True,
layer_scale_init_value=1e-5,
inference_mode: bool = False,
):
"""Build RepMixer Module.
Args:
dim: Input feature map dimension. :math:`C_{in}` from an expected input of size :math:`(B, C_{in}, H, W)`.
kernel_size: Kernel size for spatial mixing. Default: 3
use_layer_scale: If True, learnable layer scale is used. Default: ``True``
layer_scale_init_value: Initial value for layer scale. Default: 1e-5
inference_mode: If True, instantiates model in inference mode. Default: ``False``
"""
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.inference_mode = inference_mode
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim,
kernel_size=self.kernel_size,
stride=1,
padding=self.kernel_size // 2,
groups=self.dim,
bias=True,
)
else:
self.norm = MobileOneBlock(
dim,
dim,
kernel_size,
padding=kernel_size // 2,
groups=dim,
use_act=False,
use_scale_branch=False,
num_conv_branches=0,
)
self.mixer = MobileOneBlock(
dim,
dim,
kernel_size,
padding=kernel_size // 2,
groups=dim,
use_act=False,
)
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if hasattr(self, "reparam_conv"):
x = self.reparam_conv(x)
return x
else:
if self.use_layer_scale:
x = x + self.layer_scale * (self.mixer(x) - self.norm(x))
else:
x = x + self.mixer(x) - self.norm(x)
return x
def reparameterize(self) -> None:
"""Reparameterize mixer and norm into a single
convolutional layer for efficient inference.
"""
if self.inference_mode:
return
self.mixer.reparameterize()
self.norm.reparameterize()
if self.use_layer_scale:
w = self.mixer.id_tensor + self.layer_scale.unsqueeze(-1) * (
self.mixer.reparam_conv.weight - self.norm.reparam_conv.weight
)
b = torch.squeeze(self.layer_scale) * (
self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
)
else:
w = (
self.mixer.id_tensor
+ self.mixer.reparam_conv.weight
- self.norm.reparam_conv.weight
)
b = self.mixer.reparam_conv.bias - self.norm.reparam_conv.bias
self.reparam_conv = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim,
kernel_size=self.kernel_size,
stride=1,
padding=self.kernel_size // 2,
groups=self.dim,
bias=True,
)
self.reparam_conv.weight.data = w
self.reparam_conv.bias.data = b
self.__delattr__("mixer")
self.__delattr__("norm")
if self.use_layer_scale:
self.__delattr__("layer_scale")
class ConvFFN(nn.Module):
"""Convolutional FFN Module."""
def __init__(
self,
in_channels: int,
hidden_channels: Optional[int] = None,
out_channels: Optional[int] = None,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
) -> None:
"""Build convolutional FFN module.
Args:
in_channels: Number of input channels.
hidden_channels: Number of channels after expansion. Default: None
out_channels: Number of output channels. Default: None
act_layer: Activation layer. Default: ``GELU``
drop: Dropout rate. Default: ``0.0``.
"""
super().__init__()
out_channels = out_channels or in_channels
hidden_channels = hidden_channels or in_channels
self.conv = nn.Sequential()
self.conv.add_module(
"conv",
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=7,
padding=3,
groups=in_channels,
bias=False,
),
)
# Fallback, sometimes batchnorm tensors
# do not get instantiated correctly on some processes
# when using deepspeed + accelerate
norm_layer = nn.BatchNorm2d(num_features=out_channels)
if norm_layer.weight.shape[0] == 0:
norm_layer.weight = nn.Parameter(torch.zeros(out_channels))
if norm_layer.bias.shape[0] == 0:
norm_layer.bias = nn.Parameter(torch.zeros(out_channels))
self.conv.add_module("bn", norm_layer)
self.fc1 = nn.Conv2d(in_channels, hidden_channels, kernel_size=1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_channels, out_channels, kernel_size=1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m: nn.Module) -> None:
if isinstance(m, nn.Conv2d):
normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class RepCPE(nn.Module):
"""Implementation of conditional positional encoding.
For more details refer to paper:
`Conditional Positional Encodings for Vision Transformers <https://arxiv.org/pdf/2102.10882.pdf>`_
In our implementation, we can reparameterize this module to eliminate a skip connection.
"""
def __init__(
self,
in_channels: int,
embed_dim: int = 768,
spatial_shape: Union[int, Tuple[int, int]] = (7, 7),
inference_mode=False,
) -> None:
"""Build reparameterizable conditional positional encoding
Args:
in_channels: Number of input channels.
embed_dim: Number of embedding dimensions. Default: 768
spatial_shape: Spatial shape of kernel for positional encoding. Default: (7, 7)
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
"""
super(RepCPE, self).__init__()
if isinstance(spatial_shape, int):
spatial_shape = tuple([spatial_shape] * 2)
assert isinstance(spatial_shape, Tuple), (
f'"spatial_shape" must by a sequence or int, '
f"get {type(spatial_shape)} instead."
)
assert len(spatial_shape) == 2, (
f'Length of "spatial_shape" should be 2, '
f"got {len(spatial_shape)} instead."
)
self.spatial_shape = spatial_shape
self.embed_dim = embed_dim
self.in_channels = in_channels
self.groups = embed_dim
if inference_mode:
self.reparam_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.embed_dim,
kernel_size=self.spatial_shape,
stride=1,
padding=int(self.spatial_shape[0] // 2),
groups=self.embed_dim,
bias=True,
)
else:
self.pe = nn.Conv2d(
in_channels,
embed_dim,
spatial_shape,
1,
int(spatial_shape[0] // 2),
bias=True,
groups=embed_dim,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if hasattr(self, "reparam_conv"):
x = self.reparam_conv(x)
return x
else:
x = self.pe(x) + x
return x
def reparameterize(self) -> None:
# Build equivalent Id tensor
input_dim = self.in_channels // self.groups
kernel_value = torch.zeros(
(
self.in_channels,
input_dim,
self.spatial_shape[0],
self.spatial_shape[1],
),
dtype=self.pe.weight.dtype,
device=self.pe.weight.device,
)
for i in range(self.in_channels):
kernel_value[
i,
i % input_dim,
self.spatial_shape[0] // 2,
self.spatial_shape[1] // 2,
] = 1
id_tensor = kernel_value
# Reparameterize Id tensor and conv
w_final = id_tensor + self.pe.weight
b_final = self.pe.bias
# Introduce reparam conv
self.reparam_conv = nn.Conv2d(
in_channels=self.in_channels,
out_channels=self.embed_dim,
kernel_size=self.spatial_shape,
stride=1,
padding=int(self.spatial_shape[0] // 2),
groups=self.embed_dim,
bias=True,
)
self.reparam_conv.weight.data = w_final
self.reparam_conv.bias.data = b_final
self.__delattr__("pe")
class RepMixerBlock(nn.Module):
"""Implementation of Metaformer block with RepMixer as token mixer.
For more details on Metaformer structure, please refer to:
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
"""
def __init__(
self,
dim: int,
kernel_size: int = 3,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
drop: float = 0.0,
drop_path: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
inference_mode: bool = False,
):
"""Build RepMixer Block.
Args:
dim: Number of embedding dimensions.
kernel_size: Kernel size for repmixer. Default: 3
mlp_ratio: MLP expansion ratio. Default: 4.0
act_layer: Activation layer. Default: ``nn.GELU``
drop: Dropout rate. Default: 0.0
drop_path: Drop path rate. Default: 0.0
use_layer_scale: Flag to turn on layer scale. Default: ``True``
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
inference_mode: Flag to instantiate block in inference mode. Default: ``False``
"""
super().__init__()
self.token_mixer = RepMixer(
dim,
kernel_size=kernel_size,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
mlp_ratio
)
mlp_hidden_dim = int(dim * mlp_ratio)
self.convffn = ConvFFN(
in_channels=dim,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# Drop Path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# Layer Scale
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x):
if self.use_layer_scale:
x = self.token_mixer(x)
x = x + self.drop_path(self.layer_scale * self.convffn(x))
else:
x = self.token_mixer(x)
x = x + self.drop_path(self.convffn(x))
return x
class AttentionBlock(nn.Module):
"""Implementation of metaformer block with MHSA as token mixer.
For more details on Metaformer structure, please refer to:
`MetaFormer Is Actually What You Need for Vision <https://arxiv.org/pdf/2111.11418.pdf>`_
"""
def __init__(
self,
dim: int,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.BatchNorm2d,
drop: float = 0.0,
drop_path: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
):
"""Build Attention Block.
Args:
dim: Number of embedding dimensions.
mlp_ratio: MLP expansion ratio. Default: 4.0
act_layer: Activation layer. Default: ``nn.GELU``
norm_layer: Normalization layer. Default: ``nn.BatchNorm2d``
drop: Dropout rate. Default: 0.0
drop_path: Drop path rate. Default: 0.0
use_layer_scale: Flag to turn on layer scale. Default: ``True``
layer_scale_init_value: Layer scale value at initialization. Default: 1e-5
"""
super().__init__()
# Fallback, sometimes batchnorm tensors
# do not get instantiated correctly on some processes
# when using deepspeed + accelerate
norm_layer_ = norm_layer(num_features=dim)
if norm_layer_.weight.shape[0] == 0:
norm_layer_.weight = nn.Parameter(torch.zeros(dim))
if norm_layer_.bias.shape[0] == 0:
norm_layer_.bias = nn.Parameter(torch.zeros(dim))
self.norm = norm_layer_
self.token_mixer = MHSA(dim=dim)
assert mlp_ratio > 0, "MLP ratio should be greater than 0, found: {}".format(
mlp_ratio
)
mlp_hidden_dim = int(dim * mlp_ratio)
self.convffn = ConvFFN(
in_channels=dim,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
# Drop path
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# Layer Scale
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones((dim, 1, 1)), requires_grad=True
)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(self.norm(x)))
x = x + self.drop_path(self.layer_scale_2 * self.convffn(x))
else:
x = x + self.drop_path(self.token_mixer(self.norm(x)))
x = x + self.drop_path(self.convffn(x))
return x
def basic_blocks(
dim: int,
block_index: int,
num_blocks: List[int],
token_mixer_type: str,
kernel_size: int = 3,
mlp_ratio: float = 4.0,
act_layer: nn.Module = nn.GELU,
norm_layer: nn.Module = nn.BatchNorm2d,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
inference_mode=False,
) -> nn.Sequential:
"""Build FastViT blocks within a stage.
Args:
dim: Number of embedding dimensions.
block_index: block index.
num_blocks: List containing number of blocks per stage.
token_mixer_type: Token mixer type.
kernel_size: Kernel size for repmixer.
mlp_ratio: MLP expansion ratio.
act_layer: Activation layer.
norm_layer: Normalization layer.
drop_rate: Dropout rate.
drop_path_rate: Drop path rate.
use_layer_scale: Flag to turn on layer scale regularization.
layer_scale_init_value: Layer scale value at initialization.
inference_mode: Flag to instantiate block in inference mode.
Returns:
nn.Sequential object of all the blocks within the stage.
"""
blocks = []
for block_idx in range(num_blocks[block_index]):
block_dpr = (
drop_path_rate
* (block_idx + sum(num_blocks[:block_index]))
/ (sum(num_blocks) - 1)
)
if token_mixer_type == "repmixer":
blocks.append(
RepMixerBlock(
dim,
kernel_size=kernel_size,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
)
elif token_mixer_type == "attention":
blocks.append(
AttentionBlock(
dim,
mlp_ratio=mlp_ratio,
act_layer=act_layer,
norm_layer=norm_layer,
drop=drop_rate,
drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
)
)
else:
raise ValueError(
"Token mixer type: {} not supported".format(token_mixer_type)
)
blocks = nn.Sequential(*blocks)
return blocks
class GlobalPool2D(nn.Module):
"""This class implements global pooling with linear projection."""
def __init__(self, in_dim: int, out_dim: int, *args, **kwargs) -> None:
super().__init__()
scale = in_dim**-0.5
self.proj = nn.Parameter(scale * torch.randn(size=(in_dim, out_dim)))
self.in_dim = in_dim
self.out_dim = out_dim
def pool(self, x) -> Tensor:
if x.dim() == 4:
dims = [-2, -1]
elif x.dim() == 5:
dims = [-3, -2, -1]
x = torch.mean(x, dim=dims, keepdim=False)
return x
def forward(self, x: Tensor, *args, **kwargs) -> Tensor:
# x is of shape [batch, in_dim]
assert (
x.dim() == 4
), "Input should be 4-dimensional (Batch x in_dim x in_height x in_width). Got: {}".format(
x.shape
)
# [batch, in_dim, in_height, in_width] --> [batch, in_dim]
x = self.pool(x)
# [batch, in_dim] x [in_dim, out_dim] --> [batch, out_dim]
x = x @ self.proj
return x
class FastViT(nn.Module):
"""
This class implements `FastViT architecture <https://arxiv.org/pdf/2303.14189.pdf>`_
"""
def __init__(
self,
layers,
token_mixers: Tuple[str, ...],
embed_dims=None,
mlp_ratios=None,
downsamples=None,
se_downsamples=None,
repmixer_kernel_size=3,
norm_layer: nn.Module = nn.BatchNorm2d,
act_layer: nn.Module = nn.GELU,
num_classes=1000,
pos_embs=None,
down_patch_size=7,
down_stride=2,
drop_rate=0.0,
drop_path_rate=0.0,
use_layer_scale=True,
layer_scale_init_value=1e-5,
init_cfg=None,
pretrained=None,
cls_ratio=2.0,
inference_mode=False,
stem_scale_branch=True,
**kwargs,
) -> None:
super().__init__()
self.num_classes = num_classes
if len(layers) == 4:
self.out_indices = [0, 2, 4, 7]
elif len(layers) == 5:
self.out_indices = [0, 2, 4, 7, 10]
else:
raise NotImplementedError("FPN is not implemented for more than 5 stages.")
if pos_embs is None:
pos_embs = [None] * len(layers)
if se_downsamples is None:
se_downsamples = [False] * len(layers)
# Convolutional stem
self.patch_embed = convolutional_stem(3, embed_dims[0], inference_mode,
use_scale_branch=stem_scale_branch)
# Build the main stages of the network architecture
network = []
for i in range(len(layers)):
# Add position embeddings if requested
if pos_embs[i] is not None:
network.append(
pos_embs[i](
embed_dims[i], embed_dims[i], inference_mode=inference_mode
)
)
stage = basic_blocks(
embed_dims[i],
i,
layers,
token_mixer_type=token_mixers[i],
kernel_size=repmixer_kernel_size,
mlp_ratio=mlp_ratios[i],
act_layer=act_layer,
norm_layer=norm_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
inference_mode=inference_mode,
)
network.append(stage)
if i >= len(layers) - 1:
break
# Patch merging/downsampling between stages.
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
network.append(
PatchEmbed(
patch_size=down_patch_size,
stride=down_stride,
in_channels=embed_dims[i],
embed_dim=embed_dims[i + 1],
inference_mode=inference_mode,
use_se=se_downsamples[i + 1],
)
)
self.network = nn.ModuleList(network)
# Classifier head
self.conv_exp = MobileOneBlock(
in_channels=embed_dims[-1],
out_channels=int(embed_dims[-1] * cls_ratio),
kernel_size=3,
stride=1,
padding=1,
groups=embed_dims[-1],
inference_mode=inference_mode,
use_se=True,
num_conv_branches=1,
)
self.head = (
nn.Linear(int(embed_dims[-1] * cls_ratio), num_classes)
if num_classes > 0
else nn.Identity()
)
self.apply(self.cls_init_weights)
self.init_cfg = copy.deepcopy(init_cfg)
def cls_init_weights(self, m: nn.Module) -> None:
"""Init. for classification"""
if isinstance(m, nn.Linear):
normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward_embeddings(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
return x
def forward_tokens(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for idx, block in enumerate(self.network):
x = block(x)
return x
def forward(self, x: torch.Tensor, *args, **kwargs) -> Union[Tensor, Dict[str, Tensor]]:
# input embedding
x = self.forward_embeddings(x)
# through backbone
x = self.forward_tokens(x)
# for image classification/embedding
x = self.conv_exp(x)
cls_out = self.head(x)
out_dict = dict()
if kwargs.get("return_image_embeddings", False):
out_dict.update({"logits": cls_out})
out_dict.update({"image_embeddings": x})
return out_dict
else:
return cls_out
@register_model
def fastvithd(pretrained=False, **kwargs):
"""Instantiate FastViTHD model variant."""
layers = [2, 12, 24, 4, 2]
embed_dims = [96, 192, 384, 768, 1536]
mlp_ratios = [4, 4, 4, 4, 4]
downsamples = [True, True, True, True, True]
pos_embs = [None, None, None, partial(RepCPE, spatial_shape=(7, 7)), partial(RepCPE, spatial_shape=(7, 7))]
token_mixers = ("repmixer", "repmixer", "repmixer", "attention", "attention")
model = FastViT(
layers,
token_mixers=token_mixers,
embed_dims=embed_dims,
pos_embs=pos_embs,
mlp_ratios=mlp_ratios,
downsamples=downsamples,
norm_layer=LayerNormChannel,
stem_scale_branch=False,
inference_mode=True,
**kwargs,
)
model.default_cfg = default_cfgs["fastvit_m"]
if pretrained:
raise ValueError("Functionality not implemented.")
return model
def load_model_config(
model_name: str,
) -> Any:
model_cfg = {
"embed_dim": 768,
"image_cfg": {
"image_size": 1024,
"model_name": "fastvithd",
"embed_dim": 3072,
"patch_size": 64
},
"text_cfg": {
"context_length": 77,
"vocab_size": 49408,
"dim": 768,
"ffn_multiplier_per_layer": 4.0,
"n_heads_per_layer": 12,
"n_transformer_layers": 12,
"norm_layer": "layer_norm_fp32",
"causal_masking": False,
"model_name": "base"
}
}
return model_cfg
class MCi(nn.Module):
"""
This class implements `MCi Models <https://arxiv.org/pdf/2311.17049.pdf>`_
"""
def __init__(self, model_name: str, *args, **kwargs) -> None:
super().__init__()
self.projection_dim = None
if "projection_dim" in kwargs:
self.projection_dim = kwargs.get("projection_dim")
# Create model
self.model = create_model(model_name, projection_dim=self.projection_dim)
# Build out projection head.
if self.projection_dim is not None:
if hasattr(self.model, "head"):
self.model.head = MCi._update_image_classifier(
image_classifier=self.model.head, projection_dim=self.projection_dim
)
def forward(self, x: Any, *args, **kwargs) -> Any:
"""A forward function of the model."""
x = self.model(x, *args, **kwargs)
return x
@staticmethod
def _get_in_feature_dimension(image_classifier: nn.Module) -> int:
"""Return the input feature dimension to the image classification head."""
in_features = None
if isinstance(image_classifier, nn.Sequential):
# Classifier that uses nn.Sequential usually has global pooling and
# multiple linear layers. Find the first linear layer and get its
# in_features
for layer in image_classifier:
if isinstance(layer, nn.Linear):
in_features = layer.in_features
break
elif isinstance(image_classifier, nn.Linear):
in_features = image_classifier.in_features
if in_features is None:
raise NotImplementedError(
f"Cannot get input feature dimension of {image_classifier}."
)
return in_features
@staticmethod
def _update_image_classifier(
image_classifier: nn.Module, projection_dim: int, *args, **kwargs
) -> nn.Module:
in_features = MCi._get_in_feature_dimension(image_classifier)
new_img_classifier = GlobalPool2D(in_dim=in_features, out_dim=projection_dim)
return new_img_classifier
class MobileCLIPVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.tune_vision_tower = getattr(args, 'unfreeze_mm_vision_tower', False)
self.input_image_size = int(vision_tower.split("_")[-1])
# Delay load is disabled for now
if not delay_load:
self.load_model()
elif getattr(args, 'unfreeze_mm_vision_tower', False):
self.load_model()
else:
model_cfg = load_model_config(self.vision_tower_name)
self.cfg_only = model_cfg
def load_model(self, device_map=None):
if self.is_loaded:
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
return
# Load model config
model_cfg = load_model_config(self.vision_tower_name)
# Override default image resolution
model_cfg["image_cfg"]["image_size"] = self.input_image_size
self.cfg_only = model_cfg
# Build HF CLIPImageProcessor with MobileCLIP parameters
self.image_processor = CLIPImageProcessor(crop_size={"height": model_cfg["image_cfg"]["image_size"],
"width": model_cfg["image_cfg"]["image_size"]},
image_mean=[0.0, 0.0, 0.0],
image_std=[1.0, 1.0, 1.0],
size={"shortest_edge": model_cfg["image_cfg"]["image_size"]})
# Instantiate the image encoder
self.vision_tower = MCi(model_name=model_cfg["image_cfg"]["model_name"],
projection_dim=model_cfg["embed_dim"])
if not self.tune_vision_tower:
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
# Features from penultimate layer
image_features = image_forward_outs["image_embeddings"]
# Reshape 4D tensor to 3D
B, C, H, W = image_features.shape
image_features = image_features.reshape(B, C, H*W)
image_features = image_features.transpose(1, 2)
return image_features
def forward(self, images):
if self.tune_vision_tower:
return self.forward_images(images)
else:
with torch.no_grad():
return self.forward_images(images)
def forward_images(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), return_image_embeddings=True)
image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), return_image_embeddings=True)
image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return next(self.vision_tower.parameters()).dtype
@property
def device(self):
return next(self.vision_tower.parameters()).device
@property
def config(self):
return self.cfg_only
@property
def hidden_size(self):
return self.config["image_cfg"]["embed_dim"]
@property
def num_patches_per_side(self):
return self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"]
@property
def num_patches(self):
return (self.config["image_cfg"]["image_size"] // self.config["image_cfg"]["patch_size"]) ** 2
class IdentityMap(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, *args, **kwargs):
return x
@property
def config(self):
return {"mm_projector_type": 'identity'}
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == 'linear':
return nn.Linear(config.mm_hidden_size, config.hidden_size)
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match:
mlp_depth = int(mlp_gelu_match.group(1))
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
return nn.Sequential(*modules)
if projector_type == 'identity':
return IdentityMap()
raise ValueError(f'Unknown projector type: {projector_type}')
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
return MobileCLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
self.image_newline = nn.Parameter(
torch.empty(config.hidden_size, dtype=self.dtype)
)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
if getattr(self, 'mm_projector', None) is None:
self.mm_projector = build_vision_projector(self.config)
if 'unpad' in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
import ast
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels,
images, image_sizes=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
if mm_patch_merge_type == 'flat':
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith('spatial'):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == 'anyres':
if hasattr(self.get_vision_tower(), 's2_image_size'):
img_size = self.get_vision_tower().s2_image_size
elif isinstance(self.get_vision_tower().config, dict):
img_size = self.get_vision_tower().config["image_cfg"]["image_size"]
else:
img_size = self.get_vision_tower().config.image_size
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, img_size)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if 'unpad' in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if 'unpad' in mm_patch_merge_type:
image_feature = torch.cat((
image_feature,
self.model.image_newline[None].to(image_feature.device)
), dim=0)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
class LlavaQwen2Model(LlavaMetaModel, Qwen2Model):
config_class = LlavaConfig
def __init__(self, config: Qwen2Config):
super(LlavaQwen2Model, self).__init__(config)
class LlavaQwen2ForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaConfig
def __init__(self, config):
super(Qwen2ForCausalLM, self).__init__(config)
self.model = LlavaQwen2Model(config)
# self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
image_sizes
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes
)
else:
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
inputs['images'] = images
if image_sizes is not None:
inputs['image_sizes'] = image_sizes
return inputs
AutoConfig.register("llava_qwen2", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaQwen2ForCausalLM)