|
--- |
|
license: mit |
|
language: |
|
- en |
|
base_model: |
|
- Ultralytics/YOLOv8 |
|
pipeline_tag: object-detection |
|
tags: |
|
- Ultralytics |
|
- YOLOv8 |
|
- YOLOv8-Seg |
|
--- |
|
|
|
# YOLOv8-Seg |
|
|
|
This version of YOLOv8-Seg has been converted to run on the Axera NPU using **w8a16** quantization. |
|
|
|
This model has been optimized with the following LoRA: |
|
|
|
Compatible with Pulsar2 version: 3.4 |
|
|
|
## Convert tools links: |
|
|
|
For those who are interested in model conversion, you can try to export axmodel through |
|
|
|
- [The repo of AXera Platform](https://github.com/AXERA-TECH/ax-samples), which you can get the detial of guide |
|
|
|
- [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) |
|
|
|
|
|
## Support Platform |
|
|
|
- AX650 |
|
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) |
|
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) |
|
- AX630C |
|
- [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html) |
|
- [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM) |
|
- [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit) |
|
|
|
|Chips|yolov8s-seg| |
|
|--|--| |
|
|AX650| 4.6 ms | |
|
|AX630C| TBD ms | |
|
|
|
## How to use |
|
|
|
Download all files from this repository to the device |
|
|
|
``` |
|
|
|
root@ax650:~/YOLOv8-Seg# tree |
|
. |
|
|-- ax650 |
|
| `-- yolov8s-seg.axmodel |
|
|-- ax_yolov8_seg |
|
|-- football.jpg |
|
`-- yolov8_seg_out.jpg |
|
``` |
|
|
|
### Inference |
|
|
|
Input image: |
|
 |
|
|
|
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) |
|
|
|
``` |
|
root@ax650:~/samples/AXERA-TECH/YOLOv8-Seg# ./ax_yolov8_seg -m ax650/yolov8s_seg.axmodel -i football.jpg |
|
-------------------------------------- |
|
model file : ax650/yolov8s_seg.axmodel |
|
image file : football.jpg |
|
img_h, img_w : 640 640 |
|
-------------------------------------- |
|
Engine creating handle is done. |
|
Engine creating context is done. |
|
Engine get io info is done. |
|
Engine alloc io is done. |
|
Engine push input is done. |
|
-------------------------------------- |
|
|
|
input size: 1 |
|
name: images [UINT8] [BGR] |
|
1 x 640 x 640 x 3 |
|
|
|
|
|
output size: 7 |
|
name: /model.22/Concat_1_output_0 [FLOAT32] |
|
1 x 80 x 80 x 144 |
|
|
|
name: /model.22/Concat_2_output_0 [FLOAT32] |
|
1 x 40 x 40 x 144 |
|
|
|
name: /model.22/Concat_3_output_0 [FLOAT32] |
|
1 x 20 x 20 x 144 |
|
|
|
name: /model.22/cv4.0/cv4.0.2/Conv_output_0 [FLOAT32] |
|
1 x 80 x 80 x 32 |
|
|
|
name: /model.22/cv4.1/cv4.1.2/Conv_output_0 [FLOAT32] |
|
1 x 40 x 40 x 32 |
|
|
|
name: /model.22/cv4.2/cv4.2.2/Conv_output_0 [FLOAT32] |
|
1 x 20 x 20 x 32 |
|
|
|
name: output1 [FLOAT32] |
|
1 x 32 x 160 x 160 |
|
|
|
post process cost time:16.21 ms |
|
-------------------------------------- |
|
Repeat 1 times, avg time 4.69 ms, max_time 4.69 ms, min_time 4.69 ms |
|
-------------------------------------- |
|
detection num: 8 |
|
0: 92%, [1354, 340, 1629, 1035], person |
|
0: 91%, [ 5, 359, 314, 1108], person |
|
0: 91%, [ 759, 220, 1121, 1153], person |
|
0: 88%, [ 490, 476, 661, 999], person |
|
32: 73%, [1233, 877, 1286, 923], sports ball |
|
32: 63%, [ 772, 888, 828, 937], sports ball |
|
32: 63%, [ 450, 882, 475, 902], sports ball |
|
0: 55%, [1838, 690, 1907, 811], person |
|
-------------------------------------- |
|
``` |
|
|
|
Output image: |
|
 |