This version essentially imploded when learning cutmix cifar100, and yet the geometry held the entire time through a cutmix gauntlet that could not be overcome.
I plan to run a few experiments on it with the geometric and simplex blocks frozen. As it stands, the geometric side is essentially a scaffold of cutmix potential, however this scaffold is limited. It must be further trained, but this is a good basline test.
I will run 4 full trains to test the potential;
- Frozen geometry, no augmentation. It's working, but overfitted by epoch 30 - which, took nearly 60 before. So that's interesting and yet overfitted.
- Full augmentation no cutmix/mixup using cifar10 augs.
- Unfrozen cross-attention only, full augs.
- Unfrozen cross-attention only, no augs.
======================================================================
CHAOS-NATIVE DUAL-STREAM PROBE
======================================================================
Loading model...
Model loaded from: ./checkpoints_dualstream/20251008_163456_chaos_native/model_epoch_149.safetensors
Parameters: 41,132,926
Loading data...
Test samples: 10000
Probe samples: 5000
======================================================================
PROBE 1: Dual-Stream Analysis
======================================================================
[1.1] Extracting stream features...
Extracting: 0%| | 0/40 [00:00<?, ?it/s]
Model output keys: ['logits', 'visual_features', 'geometric_features', 'pe_features', 'cantor_measure', 'visual_stream', 'geometric_stream']
logits: torch.Size([128, 100])
visual_features: torch.Size([128, 512])
geometric_features: torch.Size([128, 256])
pe_features: torch.Size([65, 24])
cantor_measure: torch.Size([65])
visual_stream: torch.Size([128, 65, 512])
geometric_stream: torch.Size([128, 8, 256])
Extracting: 100%|ββββββββββ| 40/40 [00:02<00:00, 18.99it/s]
Visual features shape: (5000, 100)
Geometric features shape: (5000, 256)
[1.2] Analyzing stream dimensionality...
Visual stream: 1/100 dims for 90% variance
Geometric stream: 1/256 dims for 90% variance
Visual intrinsic dim: 1.04
Geometric intrinsic dim: 1.01
[1.3] Measuring stream independence...
Mean abs correlation: 0.2077
Max abs correlation: 0.9985
Interpretation: Independent
[1.4] Testing class separability per stream...
Visual stream probe: 0.0227
Geometric stream probe: 0.0227
Visual advantage: +0.0000
======================================================================
PROBE 2: Geometric Stream Health
======================================================================
[2.1] Collecting geometric health metrics...
Health metrics: 100%|ββββββββββ| 40/40 [00:02<00:00, 18.90it/s]
Token Diversity: 0.2820 Β± 0.0025
Feature Diversity: 1.3960 Β± 0.0029
Mean Norm: 22.2937 Β± 0.0464
Status: β Healthy
======================================================================
PROBE 3: Chaos Tolerance (CutMix Robustness)
======================================================================
[3.0] Testing alpha=0.0...
Accuracy: 0.0221
Geometric mean norm: 22.2951
[3.2] Testing alpha=0.2...
Accuracy: 0.0173
Geometric mean norm: 22.3495
[3.5] Testing alpha=0.5...
Accuracy: 0.0165
Geometric mean norm: 22.3517
[3.10] Testing alpha=1.0...
Accuracy: 0.0174
Geometric mean norm: 22.3580
[3.15] Testing alpha=1.5...
Accuracy: 0.0161
Geometric mean norm: 22.3592
[3.20] Testing alpha=2.0...
Accuracy: 0.0164
Geometric mean norm: 22.3624
Clean accuracy (Ξ±=0.0): 0.0221
Extreme chaos (Ξ±=2.0): 0.0164
Chaos tolerance: 74.21%
Interpretation: Good
======================================================================
PROBE 4: Clean vs Mixed Image Analysis
======================================================================
[4.1] Testing on clean images...
Accuracy: 0.0221
Mean confidence: 0.0120
[4.2] Testing on mixed images (Ξ±=1.0)...
Accuracy: 0.0160
Mean confidence: 0.0106
Performance gap: 0.0061
Confidence gap: 0.0014
Adaptation: Strong
======================================================================
PROBE 5: Geometric Stream Stability
======================================================================
[5.1] Testing Gaussian noise robustness...
Noise Ο=0.0: norm=22.2937
Noise Ο=0.1: norm=22.2945
Noise Ο=0.2: norm=22.2965
Noise Ο=0.3: norm=22.2948
[5.2] Testing CutMix stability...
Norm range across CutMix: 0.0704
Status: β Stable
======================================================================
Results saved to: probe_chaos_results/chaos_probe_results.json
======================================================================
======================================================================
Generating visualizations...
======================================================================
[Viz 1] Chaos tolerance curve...
[Viz 2] Stream correlation heatmap...
[Viz 3] Geometric stability...
Visualizations saved to: probe_chaos_results
======================================================================
CHAOS-NATIVE PROBE SUMMARY
======================================================================
[Dual-Stream Analysis]
Visual intrinsic dim: 1.04
Geometric intrinsic dim: 1.01
Stream independence: 0.2077
[Geometric Health]
Mean norm: 22.2937
Token diversity: 0.2820
[Chaos Tolerance]
Clean accuracy: 0.0221
Max chaos accuracy: 0.0164
Tolerance score: 74.21%
[Clean vs Mixed]
Clean accuracy: 0.0221
Mixed accuracy: 0.0160
Performance gap: 0.0061
[Geometric Stability]
Noise stable: True
CutMix stable: True
- Downloads last month
- 17
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support