|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: calculator_model_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# calculator_model_test |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0162 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 512 |
|
- eval_batch_size: 512 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.7671 | 1.0 | 6 | 2.1243 | |
|
| 1.8409 | 2.0 | 12 | 1.5234 | |
|
| 1.3096 | 3.0 | 18 | 1.0612 | |
|
| 0.9557 | 4.0 | 24 | 0.8622 | |
|
| 0.8499 | 5.0 | 30 | 0.7836 | |
|
| 0.7285 | 6.0 | 36 | 0.6873 | |
|
| 0.6464 | 7.0 | 42 | 0.5698 | |
|
| 0.5513 | 8.0 | 48 | 0.5230 | |
|
| 0.4906 | 9.0 | 54 | 0.4933 | |
|
| 0.4817 | 10.0 | 60 | 0.4228 | |
|
| 0.388 | 11.0 | 66 | 0.3776 | |
|
| 0.3697 | 12.0 | 72 | 0.3796 | |
|
| 0.3994 | 13.0 | 78 | 0.3245 | |
|
| 0.3127 | 14.0 | 84 | 0.3145 | |
|
| 0.3215 | 15.0 | 90 | 0.2752 | |
|
| 0.2758 | 16.0 | 96 | 0.2400 | |
|
| 0.2507 | 17.0 | 102 | 0.2158 | |
|
| 0.217 | 18.0 | 108 | 0.2150 | |
|
| 0.2223 | 19.0 | 114 | 0.1940 | |
|
| 0.1746 | 20.0 | 120 | 0.1826 | |
|
| 0.1625 | 21.0 | 126 | 0.1445 | |
|
| 0.1386 | 22.0 | 132 | 0.1421 | |
|
| 0.1432 | 23.0 | 138 | 0.1241 | |
|
| 0.1329 | 24.0 | 144 | 0.1104 | |
|
| 0.1413 | 25.0 | 150 | 0.0889 | |
|
| 0.1093 | 26.0 | 156 | 0.0765 | |
|
| 0.0869 | 27.0 | 162 | 0.0596 | |
|
| 0.0677 | 28.0 | 168 | 0.0495 | |
|
| 0.0646 | 29.0 | 174 | 0.0397 | |
|
| 0.0539 | 30.0 | 180 | 0.0359 | |
|
| 0.0502 | 31.0 | 186 | 0.0339 | |
|
| 0.0399 | 32.0 | 192 | 0.0285 | |
|
| 0.0453 | 33.0 | 198 | 0.0239 | |
|
| 0.0351 | 34.0 | 204 | 0.0223 | |
|
| 0.039 | 35.0 | 210 | 0.0199 | |
|
| 0.0255 | 36.0 | 216 | 0.0195 | |
|
| 0.0259 | 37.0 | 222 | 0.0177 | |
|
| 0.0241 | 38.0 | 228 | 0.0168 | |
|
| 0.0251 | 39.0 | 234 | 0.0163 | |
|
| 0.0239 | 40.0 | 240 | 0.0162 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|