See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fb3f92080c25ece3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fb3f92080c25ece3_train_data.json
type:
field_instruction: source_text
field_output: target_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/32983a73-7290-46dc-9e4a-06e649f1a344
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3600
micro_batch_size: 4
mlflow_experiment_name: /tmp/fb3f92080c25ece3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.023962312075567548
wandb_entity: null
wandb_mode: online
wandb_name: 9c23a19f-2769-4bed-9616-2c50a201f19a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9c23a19f-2769-4bed-9616-2c50a201f19a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
32983a73-7290-46dc-9e4a-06e649f1a344
This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3037
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3727 | 0.0002 | 1 | 10.3746 |
10.3418 | 0.0157 | 100 | 10.3386 |
10.3276 | 0.0314 | 200 | 10.3224 |
10.3376 | 0.0471 | 300 | 10.3171 |
10.3224 | 0.0628 | 400 | 10.3141 |
10.3309 | 0.0786 | 500 | 10.3121 |
10.3239 | 0.0943 | 600 | 10.3109 |
10.3207 | 0.1100 | 700 | 10.3099 |
10.3188 | 0.1257 | 800 | 10.3088 |
10.3228 | 0.1414 | 900 | 10.3087 |
10.3154 | 0.1571 | 1000 | 10.3077 |
10.3189 | 0.1728 | 1100 | 10.3072 |
10.3194 | 0.1885 | 1200 | 10.3068 |
10.3218 | 0.2043 | 1300 | 10.3065 |
10.3236 | 0.2200 | 1400 | 10.3061 |
10.3205 | 0.2357 | 1500 | 10.3055 |
10.321 | 0.2514 | 1600 | 10.3054 |
10.3203 | 0.2671 | 1700 | 10.3054 |
10.321 | 0.2828 | 1800 | 10.3053 |
10.3179 | 0.2985 | 1900 | 10.3048 |
10.3228 | 0.3142 | 2000 | 10.3046 |
10.3145 | 0.3300 | 2100 | 10.3045 |
10.3242 | 0.3457 | 2200 | 10.3044 |
10.318 | 0.3614 | 2300 | 10.3042 |
10.3167 | 0.3771 | 2400 | 10.3042 |
10.3135 | 0.3928 | 2500 | 10.3042 |
10.3163 | 0.4085 | 2600 | 10.3042 |
10.3239 | 0.4242 | 2700 | 10.3038 |
10.317 | 0.4399 | 2800 | 10.3038 |
10.3154 | 0.4557 | 2900 | 10.3039 |
10.3187 | 0.4714 | 3000 | 10.3037 |
10.3217 | 0.4871 | 3100 | 10.3037 |
10.317 | 0.5028 | 3200 | 10.3037 |
10.3137 | 0.5185 | 3300 | 10.3037 |
10.3193 | 0.5342 | 3400 | 10.3037 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support