See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 57fd039527663fc0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/57fd039527663fc0_train_data.json
type:
field_input: knowledge
field_instruction: intent
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a35f6753-dab1-417f-bb87-722cc70dc198
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 21483
micro_batch_size: 4
mlflow_experiment_name: /tmp/57fd039527663fc0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03351206434316354
wandb_entity: null
wandb_mode: online
wandb_name: 02fa1c1f-9647-4e4f-8cb2-27ce7de9079c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 02fa1c1f-9647-4e4f-8cb2-27ce7de9079c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a35f6753-dab1-417f-bb87-722cc70dc198
This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3098
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 9013
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3777 | 0.0002 | 1 | 10.3780 |
10.3459 | 0.0222 | 100 | 10.3433 |
10.3325 | 0.0444 | 200 | 10.3329 |
10.3343 | 0.0666 | 300 | 10.3281 |
10.3273 | 0.0888 | 400 | 10.3251 |
10.3251 | 0.1110 | 500 | 10.3227 |
10.3264 | 0.1331 | 600 | 10.3210 |
10.3221 | 0.1553 | 700 | 10.3199 |
10.325 | 0.1775 | 800 | 10.3187 |
10.3212 | 0.1997 | 900 | 10.3177 |
10.324 | 0.2219 | 1000 | 10.3171 |
10.3246 | 0.2441 | 1100 | 10.3163 |
10.3238 | 0.2663 | 1200 | 10.3159 |
10.3265 | 0.2885 | 1300 | 10.3153 |
10.3205 | 0.3107 | 1400 | 10.3147 |
10.3155 | 0.3329 | 1500 | 10.3144 |
10.3144 | 0.3551 | 1600 | 10.3138 |
10.3184 | 0.3773 | 1700 | 10.3134 |
10.3207 | 0.3994 | 1800 | 10.3133 |
10.3117 | 0.4216 | 1900 | 10.3129 |
10.3193 | 0.4438 | 2000 | 10.3127 |
10.3116 | 0.4660 | 2100 | 10.3124 |
10.3208 | 0.4882 | 2200 | 10.3122 |
10.3151 | 0.5104 | 2300 | 10.3122 |
10.3176 | 0.5326 | 2400 | 10.3116 |
10.3191 | 0.5548 | 2500 | 10.3117 |
10.3198 | 0.5770 | 2600 | 10.3116 |
10.319 | 0.5992 | 2700 | 10.3113 |
10.3187 | 0.6214 | 2800 | 10.3114 |
10.3158 | 0.6436 | 2900 | 10.3108 |
10.3246 | 0.6657 | 3000 | 10.3108 |
10.3208 | 0.6879 | 3100 | 10.3113 |
10.3156 | 0.7101 | 3200 | 10.3105 |
10.316 | 0.7323 | 3300 | 10.3104 |
10.3226 | 0.7545 | 3400 | 10.3103 |
10.3189 | 0.7767 | 3500 | 10.3102 |
10.3199 | 0.7989 | 3600 | 10.3101 |
10.3232 | 0.8211 | 3700 | 10.3101 |
10.316 | 0.8433 | 3800 | 10.3099 |
10.3195 | 0.8655 | 3900 | 10.3100 |
10.3209 | 0.8877 | 4000 | 10.3097 |
10.3124 | 0.9098 | 4100 | 10.3100 |
10.3115 | 0.9320 | 4200 | 10.3098 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support