Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 57fd039527663fc0_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/57fd039527663fc0_train_data.json
  type:
    field_input: knowledge
    field_instruction: intent
    field_output: response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a35f6753-dab1-417f-bb87-722cc70dc198
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 21483
micro_batch_size: 4
mlflow_experiment_name: /tmp/57fd039527663fc0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03351206434316354
wandb_entity: null
wandb_mode: online
wandb_name: 02fa1c1f-9647-4e4f-8cb2-27ce7de9079c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 02fa1c1f-9647-4e4f-8cb2-27ce7de9079c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a35f6753-dab1-417f-bb87-722cc70dc198

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 9013

Training results

Training Loss Epoch Step Validation Loss
10.3777 0.0002 1 10.3780
10.3459 0.0222 100 10.3433
10.3325 0.0444 200 10.3329
10.3343 0.0666 300 10.3281
10.3273 0.0888 400 10.3251
10.3251 0.1110 500 10.3227
10.3264 0.1331 600 10.3210
10.3221 0.1553 700 10.3199
10.325 0.1775 800 10.3187
10.3212 0.1997 900 10.3177
10.324 0.2219 1000 10.3171
10.3246 0.2441 1100 10.3163
10.3238 0.2663 1200 10.3159
10.3265 0.2885 1300 10.3153
10.3205 0.3107 1400 10.3147
10.3155 0.3329 1500 10.3144
10.3144 0.3551 1600 10.3138
10.3184 0.3773 1700 10.3134
10.3207 0.3994 1800 10.3133
10.3117 0.4216 1900 10.3129
10.3193 0.4438 2000 10.3127
10.3116 0.4660 2100 10.3124
10.3208 0.4882 2200 10.3122
10.3151 0.5104 2300 10.3122
10.3176 0.5326 2400 10.3116
10.3191 0.5548 2500 10.3117
10.3198 0.5770 2600 10.3116
10.319 0.5992 2700 10.3113
10.3187 0.6214 2800 10.3114
10.3158 0.6436 2900 10.3108
10.3246 0.6657 3000 10.3108
10.3208 0.6879 3100 10.3113
10.3156 0.7101 3200 10.3105
10.316 0.7323 3300 10.3104
10.3226 0.7545 3400 10.3103
10.3189 0.7767 3500 10.3102
10.3199 0.7989 3600 10.3101
10.3232 0.8211 3700 10.3101
10.316 0.8433 3800 10.3099
10.3195 0.8655 3900 10.3100
10.3209 0.8877 4000 10.3097
10.3124 0.9098 4100 10.3100
10.3115 0.9320 4200 10.3098

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/a35f6753-dab1-417f-bb87-722cc70dc198