File size: 6,490 Bytes
a8a84ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'

import argparse
import time
import librosa
from tqdm import tqdm
import sys
import os
import glob
import torch
import numpy as np
import soundfile as sf
import torch.nn as nn

# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix_track, demix_track_demucs, get_model_from_config

import warnings
warnings.filterwarnings("ignore")


def run_folder(model, args, config, device, verbose=False):
    start_time = time.time()
    model.eval()
    all_mixtures_path = glob.glob(args.input_folder + '/*.*')
    all_mixtures_path.sort()
    print('Total files found: {}'.format(len(all_mixtures_path)))

    instruments = config.training.instruments
    if config.training.target_instrument is not None:
        instruments = [config.training.target_instrument]

    if not os.path.isdir(args.store_dir):
        os.mkdir(args.store_dir)

    if not verbose:
        all_mixtures_path = tqdm(all_mixtures_path, desc="Total progress")

    if args.disable_detailed_pbar:
        detailed_pbar = False
    else:
        detailed_pbar = True

    for path in all_mixtures_path:
        print("Starting processing track: ", path)
        if not verbose:
            all_mixtures_path.set_postfix({'track': os.path.basename(path)})
        try:
            # mix, sr = sf.read(path)
            mix, sr = librosa.load(path, sr=44100, mono=False)
        except Exception as e:
            print('Can read track: {}'.format(path))
            print('Error message: {}'.format(str(e)))
            continue

        # Convert mono to stereo if needed
        if len(mix.shape) == 1:
            mix = np.stack([mix, mix], axis=0)

        mix_orig = mix.copy()
        if 'normalize' in config.inference:
            if config.inference['normalize'] is True:
                mono = mix.mean(0)
                mean = mono.mean()
                std = mono.std()
                mix = (mix - mean) / std

        mixture = torch.tensor(mix, dtype=torch.float32)
        if args.model_type == 'htdemucs':
            res = demix_track_demucs(config, model, mixture, device, pbar=detailed_pbar)
        else:
            res = demix_track(config, model, mixture, device, pbar=detailed_pbar)

        for instr in instruments:
            estimates = res[instr].T
            if 'normalize' in config.inference:
                if config.inference['normalize'] is True:
                    estimates = estimates * std + mean
            file_name, _ = os.path.splitext(os.path.basename(path))
            output_file = os.path.join(args.store_dir, f"{file_name}_{instr}.wav")
            sf.write(output_file, estimates, sr, subtype = 'FLOAT')

        # Output "instrumental", which is an inverse of 'vocals' (or first stem in list if 'vocals' absent)
        if args.extract_instrumental:
            file_name, _ = os.path.splitext(os.path.basename(path))
            instrum_file_name = os.path.join(args.store_dir, f"{file_name}_instrumental.wav")
            if 'vocals' in instruments:
                estimates = res['vocals'].T
            else:
                estimates = res[instruments[0]].T
            if 'normalize' in config.inference:
                if config.inference['normalize'] is True:
                    estimates = estimates * std + mean
            sf.write(instrum_file_name, mix_orig.T - estimates, sr, subtype = 'FLOAT')

    time.sleep(1)
    print("Elapsed time: {:.2f} sec".format(time.time() - start_time))


def proc_folder(args):
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_type", type=str, default='mdx23c', 
                        help="One of bandit, bandit_v2, bs_roformer, htdemucs, mdx23c, mel_band_roformer, scnet, scnet_unofficial, segm_models, swin_upernet, torchseg")
    parser.add_argument("--config_path", type=str, help="path to config file")
    parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
    parser.add_argument("--input_folder", type=str, help="folder with mixtures to process")
    parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
    parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
    parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided")
    parser.add_argument("--disable_detailed_pbar", action='store_true', help="disable detailed progress bar")
    parser.add_argument("--force_cpu", action = 'store_true', help = "Force the use of CPU even if CUDA is available")
    if args is None:
        args = parser.parse_args()
    else:
        args = parser.parse_args(args)

    
    device = "cpu"
    if args.force_cpu:
        device = "cpu"
    elif torch.cuda.is_available():
        print('CUDA is available, use --force_cpu to disable it.')
        device = "cuda"
        device = f'cuda:{args.device_ids}' if type(args.device_ids) == int else f'cuda:{args.device_ids[0]}'
    elif torch.backends.mps.is_available():
        device = "mps"

    print("Using device: ", device)

    model_load_start_time = time.time()
    torch.backends.cudnn.benchmark = True

    model, config = get_model_from_config(args.model_type, args.config_path)
    if args.start_check_point != '':
        print('Start from checkpoint: {}'.format(args.start_check_point))
        if args.model_type == 'htdemucs':
            state_dict = torch.load(args.start_check_point, map_location = device, weights_only=False)
            # Fix for htdemucs pretrained models
            if 'state' in state_dict:
                state_dict = state_dict['state']
        else:
            state_dict = torch.load(args.start_check_point, map_location = device, weights_only=True)
        model.load_state_dict(state_dict)
    print("Instruments: {}".format(config.training.instruments))
    
    # in case multiple CUDA GPUs are used and --device_ids arg is passed
    if type(args.device_ids) != int:
        model = nn.DataParallel(model, device_ids = args.device_ids)

    model = model.to(device)

    print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))

    run_folder(model, args, config, device, verbose=True)


if __name__ == "__main__":
    proc_folder(None)