ht-stmini-cls-v6_ftis_noPretrain-tdso-m0drp0.5trp0.5

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8079
  • Accuracy: 0.9418
  • Macro F1: 0.8549

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134675

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
42.9468 0.0015 202 71.3304 0.0578 0.0260
10.7601 1.0015 404 182.2135 0.3833 0.1065
7.148 2.0015 606 294.0172 0.5160 0.1272
6.2336 3.0015 808 337.0070 0.5693 0.1373
5.5359 4.0015 1010 240.4032 0.5860 0.1465
4.5564 5.0015 1212 162.3212 0.6015 0.1527
3.864 6.0015 1414 102.9733 0.6048 0.1560
3.2222 7.0015 1616 73.2258 0.6069 0.1600
2.8553 8.0015 1818 51.1336 0.6064 0.1702
2.6932 9.0015 2020 36.8081 0.6218 0.1697
2.4705 10.0015 2222 26.4607 0.6410 0.1870
2.3511 11.0015 2424 22.0848 0.6470 0.1982
2.212 12.0015 2626 16.7909 0.6592 0.2080
2.1816 13.0015 2828 13.8037 0.6409 0.2083
2.1249 14.0015 3030 10.9843 0.6779 0.2494
1.9573 15.0015 3232 9.1142 0.6882 0.2937
1.9343 16.0015 3434 10.9531 0.7025 0.3153
1.7866 17.0015 3636 8.8744 0.7343 0.3423
1.676 18.0015 3838 9.0175 0.7098 0.3437
1.6351 19.0015 4040 7.6501 0.7477 0.4046
1.547 20.0015 4242 7.9409 0.7501 0.3988
1.4987 21.0015 4444 7.4025 0.7300 0.4099
1.3462 22.0015 4646 7.1801 0.7722 0.4475
1.3579 23.0015 4848 6.7271 0.7867 0.4710
1.2503 24.0015 5050 6.5826 0.7899 0.4746
1.2226 25.0015 5252 6.8078 0.8065 0.5126
1.2009 26.0015 5454 6.3671 0.7977 0.5024
1.1392 27.0015 5656 6.4527 0.8019 0.5130
1.0527 28.0015 5858 7.5940 0.8030 0.5182
1.0122 29.0015 6060 7.8332 0.8098 0.5348
0.9769 30.0015 6262 9.3389 0.8142 0.5448
0.9482 31.0015 6464 8.3701 0.8272 0.5790
0.9845 32.0015 6666 9.3171 0.8133 0.5644
0.9072 33.0015 6868 11.8325 0.8308 0.5797
0.864 34.0015 7070 11.0033 0.8455 0.6138
0.7756 35.0015 7272 9.6581 0.8359 0.6119
0.7189 36.0015 7474 9.9750 0.8172 0.5842
0.6965 37.0015 7676 12.7613 0.8457 0.6284
0.6784 38.0015 7878 11.8709 0.8386 0.6212
0.651 39.0015 8080 11.9279 0.8494 0.6369
0.5838 40.0015 8282 10.8799 0.8622 0.6616
0.5719 41.0015 8484 13.4315 0.8580 0.6628
0.5357 42.0015 8686 11.7897 0.8652 0.6678
0.5585 43.0015 8888 11.6549 0.8679 0.6805
0.4961 44.0015 9090 11.6312 0.8623 0.6783
0.4779 45.0015 9292 11.7663 0.8690 0.6760
0.4439 46.0015 9494 13.0058 0.8689 0.6850
0.4488 47.0015 9696 10.0521 0.8717 0.6907
0.4511 48.0015 9898 8.9756 0.8705 0.6965
0.4136 49.0015 10100 11.2600 0.8831 0.7053
0.3892 50.0015 10302 10.6687 0.8803 0.7027
0.3732 51.0015 10504 10.9916 0.8882 0.7227
0.3624 52.0015 10706 11.4769 0.8829 0.7139
0.3474 53.0015 10908 9.7169 0.8927 0.7296
0.334 54.0015 11110 7.6957 0.8930 0.7305
0.3274 55.0015 11312 7.7272 0.8984 0.7430
0.3292 56.0015 11514 8.5022 0.8964 0.7295
0.312 57.0015 11716 8.4802 0.8955 0.7361
0.3037 58.0015 11918 8.5329 0.8930 0.7355
0.2884 59.0015 12120 9.6719 0.8991 0.7496
0.2814 60.0015 12322 7.1840 0.8991 0.7458
0.2694 61.0015 12524 6.0739 0.9010 0.7506
0.2683 62.0015 12726 6.3033 0.9036 0.7595
0.2659 63.0015 12928 6.4529 0.8981 0.7528
0.2621 64.0015 13130 6.8289 0.9024 0.7597
0.2526 65.0015 13332 5.5161 0.8976 0.7502
0.2422 66.0015 13534 5.1138 0.9088 0.7685
0.2436 67.0015 13736 4.7515 0.9070 0.7638
0.2169 68.0015 13938 5.5777 0.9075 0.7706
0.2204 69.0015 14140 5.0531 0.9047 0.7669
0.2267 70.0015 14342 4.4316 0.9103 0.7776
0.24 71.0015 14544 4.2003 0.9093 0.7747
0.2094 72.0015 14746 4.9088 0.9134 0.7802
0.2135 73.0015 14948 4.3408 0.9094 0.7762
0.2121 74.0015 15150 5.3071 0.9053 0.7624
0.2047 75.0015 15352 4.3327 0.9142 0.7865
0.2029 76.0015 15554 3.7812 0.9068 0.7556
0.2058 77.0015 15756 4.1620 0.9088 0.7591
0.1991 78.0015 15958 3.7908 0.9134 0.7822
0.1911 79.0015 16160 3.6574 0.9117 0.7820
0.1975 80.0015 16362 3.5409 0.9121 0.7875
0.1911 81.0015 16564 3.1389 0.9148 0.7885
0.1884 82.0015 16766 3.4646 0.9188 0.7912
0.1797 83.0015 16968 2.9375 0.9178 0.7909
0.194 84.0015 17170 3.0216 0.9159 0.7931
0.1824 85.0015 17372 3.2789 0.9154 0.7724
0.179 86.0015 17574 3.1421 0.9153 0.7872
0.1895 87.0015 17776 2.7620 0.9203 0.8020
0.177 88.0015 17978 3.1548 0.9162 0.7934
0.1685 89.0015 18180 2.5430 0.9220 0.8000
0.1663 90.0015 18382 3.1018 0.9165 0.7931
0.169 91.0015 18584 2.8228 0.9164 0.8001
0.1674 92.0015 18786 2.6096 0.9192 0.7974
0.1677 93.0015 18988 2.9160 0.9233 0.8060
0.1633 94.0015 19190 2.9800 0.9145 0.7943
0.1627 95.0015 19392 2.3831 0.9180 0.8031
0.1579 96.0015 19594 2.5603 0.9200 0.8004
0.1616 97.0015 19796 2.5869 0.9214 0.7875
0.1548 98.0015 19998 2.6241 0.9270 0.8150
0.1621 99.0015 20200 2.6126 0.9253 0.7990
0.1609 100.0015 20402 2.6179 0.9246 0.8117
0.1587 101.0015 20604 2.3563 0.9256 0.7979
0.1557 102.0015 20806 2.3796 0.9246 0.8019
0.1504 103.0015 21008 2.5040 0.9260 0.8173
0.1538 104.0015 21210 2.1415 0.9254 0.8126
0.1419 105.0015 21412 2.1868 0.9209 0.7842
0.1462 106.0015 21614 2.2665 0.9217 0.8093
0.1521 107.0015 21816 2.3712 0.9226 0.7982
0.1533 108.0015 22018 2.3347 0.9162 0.7971
0.1437 109.0015 22220 1.9515 0.9201 0.8039
0.1517 110.0015 22422 1.9931 0.9209 0.8085
0.1453 111.0015 22624 2.4797 0.9238 0.7983
0.1486 112.0015 22826 2.0757 0.9274 0.8199
0.1512 113.0015 23028 1.9561 0.9244 0.7997
0.1461 114.0015 23230 2.0351 0.9217 0.8134
0.1394 115.0015 23432 2.3672 0.9286 0.8197
0.1418 116.0015 23634 1.8540 0.9236 0.8170
0.1379 117.0015 23836 2.1630 0.9224 0.7941
0.15 118.0015 24038 1.8464 0.9255 0.8104
0.141 119.0015 24240 1.9459 0.9265 0.8197
0.1435 120.0015 24442 1.8441 0.9264 0.8211
0.1395 121.0015 24644 1.8781 0.9286 0.8218
0.1388 122.0015 24846 1.9251 0.9266 0.7993
0.1442 123.0015 25048 1.9733 0.9285 0.8287
0.1366 124.0015 25250 1.9398 0.9306 0.8240
0.132 125.0015 25452 1.8002 0.9287 0.8251
0.1409 126.0015 25654 1.9116 0.9286 0.8001
0.1383 127.0015 25856 1.7655 0.9250 0.8169
0.1402 128.0015 26058 1.9435 0.9272 0.8267
0.1289 129.0015 26260 2.0000 0.9213 0.8213
0.1333 130.0015 26462 1.7723 0.9298 0.8044
0.1342 131.0015 26664 1.8784 0.9315 0.8305
0.1328 132.0015 26866 1.8460 0.9281 0.8266
0.1271 133.0015 27068 2.2642 0.9292 0.8258
0.1274 134.0015 27270 2.0710 0.9307 0.8308
0.1332 135.0015 27472 1.9067 0.9268 0.8252
0.1415 136.0015 27674 1.8353 0.9250 0.8202
0.1319 137.0015 27876 1.9616 0.9301 0.8161
0.1326 138.0015 28078 1.8684 0.9326 0.8333
0.1321 139.0015 28280 1.6486 0.9272 0.8084
0.1307 140.0015 28482 1.6957 0.9315 0.8313
0.1293 141.0015 28684 1.8512 0.9325 0.8181
0.1332 142.0015 28886 1.7860 0.9307 0.8320
0.1274 143.0015 29088 1.7138 0.9309 0.8296
0.1279 144.0015 29290 1.5417 0.9296 0.8293
0.1219 145.0015 29492 1.5017 0.9315 0.8346
0.1251 146.0015 29694 1.6712 0.9324 0.8385
0.1274 147.0015 29896 1.4560 0.9263 0.8221
0.132 148.0015 30098 1.5416 0.9285 0.8271
0.127 149.0015 30300 1.6497 0.9340 0.8387
0.1312 150.0015 30502 1.8134 0.9341 0.8335
0.1257 151.0015 30704 1.6823 0.9351 0.8207
0.1203 152.0015 30906 1.8948 0.9315 0.8329
0.1251 153.0015 31108 1.6610 0.9319 0.8336
0.1273 154.0015 31310 1.6624 0.9347 0.8360
0.1252 155.0015 31512 1.7653 0.9290 0.8312
0.1193 156.0015 31714 1.8571 0.9288 0.8212
0.1279 157.0015 31916 1.4676 0.9357 0.8402
0.1319 158.0015 32118 1.4796 0.9361 0.8388
0.1257 159.0015 32320 1.6172 0.9314 0.8335
0.1187 160.0015 32522 1.5298 0.9375 0.8275
0.1296 161.0015 32724 1.5237 0.9358 0.8214
0.1244 162.0015 32926 1.5996 0.9348 0.8428
0.1235 163.0015 33128 1.6422 0.9330 0.8315
0.1206 164.0015 33330 1.4650 0.9345 0.8417
0.1234 165.0015 33532 1.4745 0.9347 0.8223
0.1196 166.0015 33734 1.7071 0.9356 0.8352
0.1205 167.0015 33936 1.5855 0.9357 0.8247
0.1232 168.0015 34138 1.6335 0.9341 0.8402
0.1221 169.0015 34340 1.4490 0.9380 0.8291
0.1188 170.0015 34542 1.6533 0.9369 0.8420
0.1144 171.0015 34744 1.5453 0.9383 0.8278
0.1186 172.0015 34946 1.4561 0.9369 0.8429
0.118 173.0015 35148 1.6109 0.9367 0.8274
0.123 174.0015 35350 1.6930 0.9324 0.8235
0.1216 175.0015 35552 1.6628 0.9344 0.8406
0.1137 176.0015 35754 1.6344 0.9366 0.8256
0.1143 177.0015 35956 1.8140 0.9396 0.8477
0.1177 178.0015 36158 1.4919 0.9359 0.8255
0.1137 179.0015 36360 1.6940 0.9388 0.8296
0.1099 180.0015 36562 1.6488 0.9389 0.8251
0.1179 181.0015 36764 1.4481 0.9347 0.8387
0.1213 182.0015 36966 1.4375 0.9320 0.8403
0.1138 183.0015 37168 1.5824 0.9364 0.8433
0.1146 184.0015 37370 1.5597 0.9348 0.8237
0.1202 185.0015 37572 1.5256 0.9359 0.8491
0.1137 186.0015 37774 1.7514 0.9393 0.8297
0.1104 187.0015 37976 1.5689 0.9357 0.8478
0.1065 188.0015 38178 1.7068 0.9367 0.8458
0.1119 189.0015 38380 1.8450 0.9368 0.8306
0.1094 190.0015 38582 1.6393 0.9394 0.8317
0.1097 191.0015 38784 1.7184 0.9398 0.8324
0.1092 192.0015 38986 1.6575 0.9389 0.8343
0.1153 193.0015 39188 1.4529 0.9387 0.8296
0.1067 194.0015 39390 1.6547 0.9403 0.8325
0.1114 195.0015 39592 1.5991 0.9379 0.8325
0.1084 196.0015 39794 1.4291 0.9394 0.8332
0.1169 197.0015 39996 1.4199 0.9384 0.8487
0.11 198.0015 40198 1.6892 0.9418 0.8549
0.1098 199.0015 40400 1.7556 0.9408 0.8364
0.1132 200.0015 40602 1.8582 0.9384 0.8331
0.109 201.0015 40804 1.6156 0.9373 0.8473
0.1061 202.0015 41006 1.5017 0.9385 0.8338
0.1067 203.0015 41208 1.5220 0.9393 0.8302
0.1036 204.0015 41410 1.8652 0.9389 0.8306
0.1088 205.0015 41612 1.5954 0.9359 0.8332
0.1089 206.0015 41814 1.6999 0.9386 0.8335
0.1033 207.0015 42016 1.7887 0.9378 0.8311
0.1062 208.0015 42218 1.5893 0.9373 0.8294
0.1071 209.0015 42420 1.6128 0.9381 0.8298
0.1072 210.0015 42622 1.4398 0.9371 0.8325
0.1061 211.0015 42824 1.7065 0.9390 0.8352
0.1069 212.0015 43026 1.6041 0.9384 0.8499
0.1076 213.0015 43228 1.6509 0.9406 0.8378
0.1071 214.0015 43430 1.7789 0.9355 0.8262
0.106 215.0015 43632 1.8484 0.9357 0.8263
0.1041 216.0015 43834 1.9450 0.9367 0.8428
0.1035 217.0015 44036 1.4895 0.9406 0.8395
0.1092 218.0015 44238 1.6099 0.9415 0.8380

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
3
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support